计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (2): 120-128.DOI: 10.3778/j.issn.1002-8331.2106-0460
陈旭旗,沈文忠
CHEN Xuqi, SHEN Wenzhong
摘要: 虹膜活体检测是虹膜识别中涉及安全的重要环节之一,也是虹膜识别领域亟待解决的问题之一,其中美瞳检测是虹膜活体检测中最具挑战性的领域。提出了一种基于SSD(single shot multibox detector)目标检测网络的虹膜定位和美瞳检测算法IrisBeautyDet,并对网络结构进行轻量化处理,引入MobileNet主干网络显著减少模型计算量,极大提高速度。采用空间注意力和通道注意力机制,进一步提高模型准确率。实验表明,在CASIA-Iris和圣母大学NDCLD的活体和美瞳虹膜数据集上,该算法具有较好的泛化能力和鲁棒性,相比原始SSD算法,IrisBeautyDet具有更少的参数量、更快的实时性和更高的准确率。相比原始SSD网络模型,该模型大小从91.1 MB下降到26.1 MB,同时将检测速度从29.68 frame/s提高到41.88 frame/s,对活体类和美瞳类的检测精确率达到99.21%和98.61%。利用导向反向传播(guided-backpropagation)对检测特征图进行可视化,分析并优化网络模型使其更有效地提取美瞳纹理特征。