计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (11): 37-45.DOI: 10.3778/j.issn.1002-8331.2209-0352

• 热点与综述 • 上一篇    下一篇

深度学习在二维虚拟试衣技术的应用与进展

花爱玲,余锋,陈子宜,王画,姜明华   

  1. 1.武汉纺织大学 计算机与人工智能学院,武汉 430200
    2.湖北省服装信息化工程技术研究中心,武汉 430200
  • 出版日期:2023-06-01 发布日期:2023-06-01

Application and Progress of Deep Learning in 2D Virtual Try-on Technology

HUA Ailing, YU Feng, CHEN Ziyi, WANG Hua, JIANG Minghua   

  1. 1. School of Computer Science and Artificial Intelligence, Wuhan Textile University, Wuhan 430200, China
    2. Engineering Research Center of Hubei Province for Clothing Information, Wuhan 430200, China
  • Online:2023-06-01 Published:2023-06-01

摘要: 虚拟试衣技术对于促进服装产业的信息化和智能化有着广泛的应用研究价值,是人工智能在服装智能制造领域的研究热点之一。目前虚拟试衣主要是基于图像生成的二维虚拟试衣研究,对二维虚拟试衣技术进行全面概述。介绍和分析了传统的虚拟试衣,对现有二维虚拟试衣技术进行了主要任务、类型、发展过程、模型等方面的分类整理,并详细探讨了各类型代表算法的原理以及相关改进。总结了传统虚拟试衣与二维虚拟试衣技术的应用,并讨论了二维虚拟试衣技术的扩展技术。对传统与当前的虚拟试衣技术的应用与优缺点进行了梳理和小结,对该领域的未来发展进行了总结与展望。

关键词: 虚拟试衣, 深度学习, 服装智能制造, 人体解析和理解

Abstract: Virtual try-on technology has wide application and research value in promoting the informatization and intelligence of the clothing industry, and is one of the research hotspots of artificial intelligence in the field of intelligent clothing manufacturing. At present, virtual try-on mainly focuses on two-dimensional virtual try-on based on image generation. This paper provides a comprehensive overview of two-dimensional virtual try-on technology. It introduces and analyzes traditional virtual try-on, and categorizes and summarizes the main tasks, types, development process, and models of existing two-dimensional virtual try-on technology. It also discusses in detail the principles and related improvements of representative algorithms of various types. It summarizes the application of traditional virtual try-on and two-dimensional virtual try-on technology, and discusses the extension technology of two-dimensional virtual try-on technology. It summarizes and compares the benefits and drawbacks of using traditional and current virtual try-on technology, as well as summarizes and forecasts the field’s future development.

Key words: virtual try-on, deep learning, clothing intelligent manufacturing, human parsing and understanding