计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (11): 37-45.DOI: 10.3778/j.issn.1002-8331.2209-0352
花爱玲,余锋,陈子宜,王画,姜明华
出版日期:
2023-06-01
发布日期:
2023-06-01
HUA Ailing, YU Feng, CHEN Ziyi, WANG Hua, JIANG Minghua
Online:
2023-06-01
Published:
2023-06-01
摘要: 虚拟试衣技术对于促进服装产业的信息化和智能化有着广泛的应用研究价值,是人工智能在服装智能制造领域的研究热点之一。目前虚拟试衣主要是基于图像生成的二维虚拟试衣研究,对二维虚拟试衣技术进行全面概述。介绍和分析了传统的虚拟试衣,对现有二维虚拟试衣技术进行了主要任务、类型、发展过程、模型等方面的分类整理,并详细探讨了各类型代表算法的原理以及相关改进。总结了传统虚拟试衣与二维虚拟试衣技术的应用,并讨论了二维虚拟试衣技术的扩展技术。对传统与当前的虚拟试衣技术的应用与优缺点进行了梳理和小结,对该领域的未来发展进行了总结与展望。
花爱玲, 余锋, 陈子宜, 王画, 姜明华. 深度学习在二维虚拟试衣技术的应用与进展[J]. 计算机工程与应用, 2023, 59(11): 37-45.
HUA Ailing, YU Feng, CHEN Ziyi, WANG Hua, JIANG Minghua. Application and Progress of Deep Learning in 2D Virtual Try-on Technology[J]. Computer Engineering and Applications, 2023, 59(11): 37-45.
[1] YU J,LIN Z,YANG J,et al.Generative image inpainting with contextual attention[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:5505-5514. [2] NEALEN A,MüLLER M,KEISER R,et al.Physically based deformable models in computer graphics[J].Computer Graphics Forum,2006,25(4):809-836. [3] NARAIN R,SAMII A,O’BRIEN J F.Adaptive anisotropic remeshing for cloth simulation[J].ACM Transactions on Graphics(TOG),2012,31(6):1-10. [4] CIRIO G,LOPEZ-MORENO J,MIRAUT D,et al.Yarn-level simulation of woven cloth[J].ACM Transactions on Graphics(TOG),2014,33(6):1-11. [5] WANG L,LI H,XIAO Q,et al.Automatic pose and wrinkle transfer for aesthetic garment display[J].Computer Aided Geometric Design,2021,89:102020. [6] WANG T Y,CEYLAN D,POPOVIC J,et al.Learning a shared shape space for multimodal garment design[J].arXiv:1806.11335,2018. [7] SANTESTEBAN I,OTADUY M A,DAN C.Learning‐based animation of clothing for virtual try‐on[J].Computer Graphics Forum,2019,38(2):355-366. [8] PATEL C,LIAO Z,PONS-MOLL G.TailorNet:predicting clothing in 3D as a function of human pose,shape and garment style[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:7365-7375. [9] MA Q,YANG J,RANJAN A,et al.Learning to dress 3D people in generative clothing[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:6469-6478. [10] PAN X,MAI J,JIANG X,et al.Predicting loose-fitting garment deformations using bone-driven motion networks[C]//ACM SIGGRAPH 2022 Conference Proceedings,2022:1-10. [11] LOPER M,MAHMOOD N,ROMERO J,et al.SMPL:a skinned multi-person linear model[J].ACM Transactions on Graphics(TOG),2015,34(6):1-16. [12] WU N,DENG Z,HUANG Y,et al.A fast garment fitting algorithm using skeleton‐based error metric[J].Computer Animation and Virtual Worlds,2018,29(3/4):e1811. [13] REED S,AKATA Z,YAN X,et al.Generative adversarial text to image synthesis[C]//International Conference on Machine Learning,2016:1060-1069. [14] LASSNER C,PONS-MOLL G,GEHLER P V.A generative model of people in clothing[C]//Proceedings of the IEEE International Conference on Computer Vision,2017:853-862. [15] ISOLA P,ZHU J Y,ZHOU T,et al.Image-to-image translation with conditional adversarial networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:1125-1134. [16] ZHU J Y,PARK T,ISOLA P,et al.Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of the IEEE International Conference on Computer Vision,2017:2223-2232. [17] CHOI Y,CHOI M,KIM M,et al.StarGAN:unified generative adversarial networks for multi-domain image-to-image translation[C]//2018 IEEE CVF Conference on Computer Vision and Pattern Recognition,2018:8789-8797. [18] WANG T C,LIU M Y,ZHU J Y,et al.High-resolution image synthesis and semantic manipulation with conditional GANs[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:8798-8807. [19] LIANG X,ZHANG H,XING E P.Generative semantic manipulation with contrasting gan[J].arXiv:1708.00315,2017. [20] ZHU J Y,KR?HENBüHL P,SHECHTMAN E,et al.Generative visual manipulation on the natural image manifold[C]//European Conference on Computer Vision.Cham:Springer,2016:597-613. [21] MIRZA M,OSINDERO S.Conditional generative adversarial nets[J].arXiv:1411.1784,2014. [22] RADFORD A,METZ L,CHINTALA S.Unsupervised representation learning with deep convolutional generative adversarial networks[J].arXiv:1511.06434,2015. [23] ZHU S,URTASUN R,FIDLER S,et al.Be your own Prada:fashion synthesis with structural coherence[C]//Proceedings of the IEEE International Conference on Computer Vision,2017:1680-1688. [24] JETCHEV N,BERGMANN U.The conditional analogy GAN:swapping fashion articles on people images[C]//Proceedings of the IEEE International Conference on Computer Vision Workshops,2017:2287-2292. [25] PANDEY N,SAVAKIS A.Poly-GAN:multi-conditioned GAN for fashion synthesis[J].Neurocomputing,2020,414:356-364. [26] HAN X,WU Z,WU Z,et al.VITON:an image-based virtual try-on network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:7543-7552. [27] LIU Y,ZHAO M,ZHANG Z,et al.Arbitrary virtual try-on network:characteristics preservation and trade-off between body and clothing[J].arXiv:2111.12346,2021. [28] CHANG Y,PENG T,HE R,et al.DP-VTON:toward detail-preserving image-based virtual try-on network[C]//ICASSP 2021 IEEE International Conference on Acoustics,Speech and Signal Processing,2021:2295-2299. [29] FELE B,LAMPE A,PEER P,et al.C-VTON:context-driven image-based virtual try-on network[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision,2022:3144-3153. [30] JANDIAL S,CHOPRA A,AYUSH K,et al.SieveNet:a unified framework for robust image-based virtual try-on[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision,2020:2182-2190. [31] FINCATO M,LANDI F,CORNIA M,et al.VITON-GT:an image-based virtual try-on model with geometric transformations[C]//2020 25th International Conference on Pattern Recognition(ICPR),2021:7669-7676. [32] BELONGIE S,MALIK J,PUZICHA J.Shape matching and object recognition using shape contexts[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(4):509-522. [33] WANG B,ZHENG H,LIANG X,et al.Toward characteristic-preserving image-based virtual try-on network[C]//Proceedings of the European Conference on Computer Vision(ECCV),2018:589-604. [34] LEE H J,LEE R,KANG M,et al.LA-VITON:a network for looking-attractive virtual try-on[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops,2019. [35] YANG H,ZHANG R,GUO X,et al.Towards photo-realistic virtual try-on by adaptively generating-preserving image content[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:7850-7859. [36] HONDA S.VITON-GAN:virtual try-on image generator trained with adversarial loss[J].arXiv:1911.07926,2019. [37] YU R,WANG X,XIE X.VTNFP:an image-based virtual try-on network with body and clothing feature preservation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2019:10511-10520. [38] MINAR M R,TUAN T T,AHN H,et al.CP-VTON+:clothing shape and texture preserving image-based virtual try-on[C]//CVPR Workshops,2020. [39] XIE Z,LAI J,XIE X.LG-VTON:fashion landmark meets image-based virtual try-on[C]//Chinese Conference on Pattern Recognition and Computer Vision(PRCV).Cham:Springer,2020:286-297. [40] LIU G,SONG D,TONG R,et al.Toward realistic virtual try-on through landmark guided shape matching[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2021:2118-2126. [41] CHOI S,PARK S,LEE M,et al.VITON-HD:high-resolution virtual try-on via misalignment-aware normalization[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2021:14131-14140. [42] HAN X,HU X,HUANG W,et al.Clothflow:a flow-based model for clothed person generation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2019:10471-10480. [43] CHOPRA A,JAIN R,HEMANI M,et al.Zflow:gated appearance flow-based virtual try-on with 3D priors[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2021:5433-5442. [44] HE S,SONG Y Z,XIANG T.Style-based global appearance flow for virtual try-on[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2022:3470-3479. [45] DU C,YU F,JIANG M,et al.VTON-SCFA:a virtual try-on network based on the semantic constraints and flow alignment[J].IEEE Transactions on Multimedia,2022,25:777-791. [46] ISSENHUTH T,MARY J,CALAUZèNES C.Do not mask what you do not need to mask:a parser-free virtual try-on[C]//European Conference on Computer Vision.Cham:Springer,2020:619-635. [47] LIN C,LI Z,ZHOU S,et al.RMGN:a regional mask guided network for parser-free virtual try-on[J].arXiv:2204.11258,2022. [48] GE Y,SONG Y,ZHANG R,et al.Parser-free virtual try-on via distilling appearance flows[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2021:8485-8493. [49] WU Z,LIN G,TAO Q,et al.M2E-Try On Net:fashion from model to everyone[C]//Proceedings of the 27th ACM International Conference on Multimedia,2019:293-301. [50] YU L,ZHONG Y,WANG X.Inpainting-based virtual try-on network for selective garment transfer[J].IEEE Access,2019,7:134125-134136. [51] NEUBERGER A,BORENSTEIN E,HILLELI B,et al.Image based virtual try-on network from unpaired data[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:5184-5193. [52] DONG H,LIANG X,SHEN X,et al.Towards multi-pose guided virtual try-on network[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2019:9026-9035. [53] WANG J,SHA T,ZHANG W,et al.Down to the last detail:virtual try-on with fine-grained details[C]//Proceedings of the 28th ACM International Conference on Multimedia,2020:466-474. [54] HU B,LIU P,ZHENG Z,et al.SPG-VTON:semantic prediction guidance for multi-pose virtual try-on[J].IEEE Transactions on Multimedia,2022,24:1233-1246. [55] HSIEH C W,CHEN C Y,CHOU C L,et al.FashionOn:semantic-guided image-based virtual try-on with detailed human and clothing information[C]//Proceedings of the 27th ACM International Conference on Multimedia,2019:275-283. [56] DU C,YU F,JIANG M,et al.Multi-pose virtual try-on via self-adaptive feature filtering[C]//2022 IEEE International Conference on Acoustics,Speech and Signal Processing,2022:2544-2548. [57] DONG H,LIANG X,SHEN X,et al.Fw-GAN:flow-navigated warping GAN for video virtual try-on[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2019:1161-1170. [58] 褚乐阳,陈卫东,谭悦,等.重塑体验:扩展现实(XR)技术及其教育应用展望——兼论“教育与新技术融合”的走向[J].远程教育杂志,2019,37(1):17-31. CHU Y Y,CHEN W D,TAN Y,et al.Rebuilding the experience:extended reality(XR) technology and its education application outlook—also discuss the trend of “education and new technology integration”[J].Journal of Distance Education,2019,37(1):17-31. [59] WANG X,YU K,WU S,et al.ESRGAN:enhanced super-resolution generative adversarial networks[C]//Proceedings of the European Conference on Computer Vision(ECCV) Workshops,2018. [60] SAJJADI M S M,SCHOLKOPF B,HIRSCH M.Enhance-Net:single image super-resolution through automated texture synthesis[C]//Proceedings of the IEEE International Conference on Computer Vision,2017:4491-4500. [61] ELGAMMAL A,LIU B,ELHOSEINY M,et al.CAN:creative adversarial networks,generating “art” by learning about styles and deviating from style norms[J].arXiv:1706.07068,2017. [62] ANTIPOV G,BACCOUCHE M,DUGELAY J L.Face aging with conditional generative adversarial networks[C]//2017 IEEE International Conference on Image Processing(ICIP),2017:2089-2093. [63] WU N,CHAO Q,CHEN Y,et al.AgentDress:realtime clothing synthesis for virtual agents using plausible deformations[J].IEEE Transactions on Visualization and Computer Graphics,2021,27(11):4107-4118. [64] MIR A,ALLDIECK T,PONS-MOLL G.Learning to transfer texture from clothing images to 3D humans[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:7023-7034. [65] ZHAO F,XIE Z,KAMPFFMEYER M,et al.M3D-VTON:a monocular-to-3D virtual try-on network[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2021:13239-13249. |
[1] | 陈吉尚, 哈里旦木·阿布都克里木, 梁蕴泽, 阿布都克力木·阿布力孜, 米克拉依·艾山, 郭文强. 深度学习在符号音乐生成中的应用研究综述[J]. 计算机工程与应用, 2023, 59(9): 27-45. |
[2] | 姜秋香, 郭伟鹏, 王子龙, 欧阳兴涛, 隆睿睿. Python语言在水文水资源领域中的应用与展望[J]. 计算机工程与应用, 2023, 59(9): 46-58. |
[3] | 罗会兰, 陈翰. 时空卷积注意力网络用于动作识别[J]. 计算机工程与应用, 2023, 59(9): 150-158. |
[4] | 刘华玲, 皮常鹏, 赵晨宇, 乔梁. 基于深度域适应的跨域目标检测算法综述[J]. 计算机工程与应用, 2023, 59(8): 1-12. |
[5] | 何家峰, 陈宏伟, 骆德汉. 深度学习实时语义分割算法研究综述[J]. 计算机工程与应用, 2023, 59(8): 13-27. |
[6] | 张艳青, 马建红, 韩颖, 曹仰杰, 李颉, 杨聪. 真实场景下图像超分辨率重建研究综述[J]. 计算机工程与应用, 2023, 59(8): 28-40. |
[7] | 岱超, 刘萍, 史俊才, 任鸿杰. 利用U型网络的遥感影像建筑物规则化提取[J]. 计算机工程与应用, 2023, 59(8): 105-116. |
[8] | 王静, 金玉楚, 郭苹, 胡少毅. 基于深度学习的相机位姿估计方法综述[J]. 计算机工程与应用, 2023, 59(7): 1-14. |
[9] | 蒋玉英, 陈心雨, 李广明, 王飞, 葛宏义. 图神经网络及其在图像处理领域的研究进展[J]. 计算机工程与应用, 2023, 59(7): 15-30. |
[10] | 周玉蓉, 张巧灵, 于广增, 徐伟强. 基于声信号的工业设备故障诊断研究综述[J]. 计算机工程与应用, 2023, 59(7): 51-63. |
[11] | 韦健, 赵旭, 李连鹏. 融合位置信息注意力的孪生弱目标跟踪算法[J]. 计算机工程与应用, 2023, 59(7): 198-206. |
[12] | 赵宏伟, 郑嘉俊, 赵鑫欣, 王胜春, 李浥东. 基于双模态深度学习的钢轨表面缺陷检测方法[J]. 计算机工程与应用, 2023, 59(7): 285-293. |
[13] | 高腾, 张先武, 李柏. 深度学习在安全帽佩戴检测中的应用研究综述[J]. 计算机工程与应用, 2023, 59(6): 13-29. |
[14] | 蒋心璐, 陈天恩, 王聪, 李书琴, 张宏鸣, 赵春江. 农业害虫检测的深度学习算法综述[J]. 计算机工程与应用, 2023, 59(6): 30-44. |
[15] | 江倩殷, 余志, 李熙莹. 标签差网络在噪声标签数据集中的应用[J]. 计算机工程与应用, 2023, 59(6): 92-100. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||