计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (10): 94-103.DOI: 10.3778/j.issn.1002-8331.2208-0486
向德萍,张普,向世明,潘春洪
XIANG Deping, ZHANG Pu, XIANG Shiming, PAN Chunhong
摘要: 随着气象观测技术的快速发展,气象行业积累了海量的气象大数据,为构建新型的数据驱动的气象预测模型提供了机遇。由于气象数据中存在的长时依赖关系和大范围空间关联关系,以及多模态气象要素间存在的复杂跨模态耦合关系,基于深度学习的气象预测是一个具有挑战性的研究课题。针对“温度、相对湿度、纬向风速、经向风速”四种经典气象要素组成的等气压层时序多模态数据,提出了一种基于多模态融合的气象预测深度学习模型。首先采用卷积网络来学习各个模态的特征,并在此基础上引入门控机制实现多模态加权融合;然后引入注意力机制,以并行时空轴向注意力代替传统的注意力机制,从而有效地学习长时依赖关系和大范围空间关联关系。整体结构上,采用了基于Transformer的编码器-解码器结构。在ERA5再分析数据集(子区域)上进行了对比实验,实验结果表明了所提方法在温度、相对湿度、风速等预测任务上的有效性和优越性。