计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (10): 288-298.DOI: 10.3778/j.issn.1002-8331.2201-0457
张星,张兴,王晴阳
ZHANG Xing, ZHANG Xing, WANG Qingyang
摘要: 差分隐私因能提供强大的隐私保证,广泛应用于解决数据发布中的隐私保护问题。但是经差分隐私保护后的数据注入大量噪音,降低了数据可用性,且已有方法中,针对混合属性数据集发布的隐私保护研究成果较少和存在隐私预算分配不合理的问题。因此,提出一种基于个性化隐私预算分配的差分隐私混合属性数据发布方法(DP-IMKP)。利用互信息与属性之间关联关系,提出一种敏感属性分级策略,使用户各属性重要程度得以量化,为不同级别的属性匹配对应的隐私保护程度;结合最优匹配理论,构造隐私预算与敏感属性之间的二部图,为各级敏感属性分配合理的隐私预算;结合信息熵和密度优化思想,对经典[k]-prototype算法中初始中心的选择和相异度度量方法进行改进,并对原始数据集进行聚类,利用各敏感属性分配的隐私预算,对聚类中心值进行差分隐私保护,防止隐私数据信息泄露。通过实验验证,DP-IMKP方法与同类方法相比,在提高数据可用性和降低数据泄露风险方面有明显优势。