计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (1): 162-168.DOI: 10.3778/j.issn.1002-8331.2106-0376
刘钊,杨帆,司亚中
LIU Zhao, YANG Fan, SI Yazhong
摘要: 视频行为识别是图像和视觉领域的一个基础问题,在基于深度学习的行为识别模型中,2D卷积方法模型参数较少,但是准确率不高;3D卷积方法在一定程度上提高了准确率,但会产生较多的参数和计算量。为了在保持准确率的前提下降低3D卷积神经网络行为识别模型的参数量,减少计算资源消耗,提出了时域零填充卷积网络行为识别算法,对视频进行3D卷积时不在时间维度上填充额外数据,以此来保证时域信息的完整性。为了充分利用有限的时间信息,设计了适合此填充方式的网络结构:先以时域不填充的方式使用3D卷积提取时空信息,然后利网络重组结构将3D卷积变为2D卷积来进一步提取特征。实验表明,该网络的参数量为10.385×106,不使用预训练权重的情况下在UCF101数据集上准确率为60.28%,与其他3D卷积网络行为识别方法相比在资源占用和准确率上都有明显优势。