计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (8): 117-124.DOI: 10.3778/j.issn.1002-8331.2009-0363
杨荣莹,何庆,杜逆索
YANG Rongying, HE Qing, DU Nisuo
摘要: 在不引入其他辅助特征的情况下,仅关注文本自身,通过构建多个特征提取器深度挖掘文本序列抽象、深层、高维的特征。采用BERT预训练模型获取信息更丰富的词嵌入;将词嵌入分别输入到BiLSTM和IDCNN中进行第一轮的特征提取,为获取更高维的特征,实现信息的多通道传输和流量控制,在IDCNN网络中引入门控机制;为提高特征提取效率,加入多头自注意力机制;构建共享BiLSTM,实现特征信息的交互流通,提高特征表征强度;创建两个CRF模型,丰富特征分布并实现特征信息的跨层传输,以提升标签序列预测的准确性。在两个数据集上进行测试,与四种NER模型进行比较,结果表明,F1值在一定程度上得到提升。