计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (6): 42-57.DOI: 10.3778/j.issn.1002-8331.2110-0070
王鑫鹏,王晓强,林浩,李雷孝,杨艳艳,孟闯,高静
出版日期:
2022-03-15
发布日期:
2022-03-15
WANG Xinpeng, WANG Xiaoqiang, LIN Hao, LI Leixiao, YANG Yanyan, MENG Chuang, GAO Jing
Online:
2022-03-15
Published:
2022-03-15
摘要: 目标检测是机器视觉领域内最具挑战性的任务之一,深度学习则是目标检测最主流的实现方法。近年来,深度学习理论及技术的快速发展,使得基于深度学习的目标检测算法取得了巨大进展,学者从数据处理、网络结构、损失函数等多方面入手,提出了一系列对于目标检测算法的改进方式。针对典型目标检测算法的改进方式进行综述。归纳了常用数据集和性能评价指标,并对数据集的特点、优势及应用领域进行了对比。梳理了典型的基于深度学习的目标检测算法的最新改进思路,从数据增强、先验框选择、网络模型的构建、预测框的选取及损失计算几个方面分别进行论述、总结与对比分析。结合当前存在的问题,展望了基于深度学习的典型目标检测算法的未来研究方向。
王鑫鹏, 王晓强, 林浩, 李雷孝, 杨艳艳, 孟闯, 高静. 深度学习典型目标检测算法的改进综述[J]. 计算机工程与应用, 2022, 58(6): 42-57.
WANG Xinpeng, WANG Xiaoqiang, LIN Hao, LI Leixiao, YANG Yanyan, MENG Chuang, GAO Jing. Review on Improvement of Typical Object Detection Algorithms in Deep Learning[J]. Computer Engineering and Applications, 2022, 58(6): 42-57.
[1] REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:unified,real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:779-788. [2] LIU W,ANGUELOV D,ERHAN D,et al.SSD:single shot multibox detector[C]//European Conference on Computer Vision.Cham:Springer,2016:21-37. [3] GIRSHICK R,DONAHUE J,DARRELL T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2014:580-587. [4] HE K,ZHANG X,REN S,et al.Spatial pyramid pooling in deep convolutional networks for visual recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(9):1904-1916. [5] DAI J,LI Y,HE K,et al.R-FCN:object detection via region-based fully convolutional networks[C]//Advances in Neural Information Processing Systems,2016:379-387. [6] LAROCA R,SEVERO E,ZANLORENSI L A,et al.A robust real-time automatic license plate recognition based on the YOLO detector[C]//2018 International Joint Conference on Neural Networks(IJCNN),2018:1-10. [7] 赵阳阳,夏亮,江欣国.基于经验模态分解与长短时记忆神经网络的短时地铁客流预测模型[J].交通运输工程学报,2020,20(4):194-204. ZHAO Y Y,XIA L,JIANG X G.Short-term metro passenger flow prediction based on EMD-LSTM[J].Journal of Traffic and Transportation Engineering,2020,20(4):194-204. [8] 周薇娜,孙丽华,徐志京.复杂环境下多尺度行人实时检测方法[J].电子与信息学报,2021,43(7):2063-2070. ZHOU W N,SUN L H,XU Z J.A real-time detection method for multi-scale pedestrians in complex environment[J].Journal of Electronics and Information Technology,2021,43(7):2063-2070. [9] 邓天民,周臻浩,方芳,等.改进YOLOv3的交通标志检测方法研究[J].计算机工程与应用,2020,56(20):28-35. DENG T M,ZHOU Z H,FANG F,et al.Research on improved YOLOv3 traffic sign detection method[J].Computer Engineering and Applications,2020,56(20):28-35. [10] 顾振辉,姜文刚.基于Mask R-CNN改进的遥感图像舰船检测[J].计算机工程与应用,2020,56(8):171-176. GU Z H,JIANG W G.Improved remote sensing image ship detection based on mask R-CNN[J].Computer Engineering and Applications,2020,56(8):171-176. [11] 侯涛,蒋瑜.改进YOLOv4在遥感飞机目标检测中的应用研究[J].计算机工程与应用,2021,57(12):224-230. HOU T,JIANG Y.Application research of improved YOLOv4 in remote sensing aircraft target detection[J].Computer Engineering and Applications,2021,57(12):224-230. [12] 苏恒强,郑笃强.基于深度学习技术生猪图像目标检测算法的应用研究[J/OL].吉林农业大学学报:1-8[2021-08-06].https://doi.org/10.13327/j.jjlau.2020.5779. SU H Q,ZHENG D Q.Application research of pig image object detection based on deep learning technology[J/OL].Journal of Jilin Agricultural University:1-8[2021-08-06].https://doi.org/10.13327/j.jjlau.2020.5779. [13] TONG K,WU Y,ZHOU F.Recent advances in small object detection based on deep learning:a review[J].Image and Vision Computing,2020,97:103910. [14] 许德刚,王露,李凡.深度学习的典型目标检测算法研究综述[J].计算机工程与应用,2021,57(8):10-25. XU D G,WANG L,LI F.Review of typical object detection algorithms for deep learning[J].Computer Engineering and Applications,2021,57(8):10-25. [15] 南晓虎,丁雷.深度学习的典型目标检测算法综述[J].计算机应用研究,2020,37(S2):15-21. NAN X H,DING L.Review of typical target detection algorithms for deep learning[J].Application Research of Computers,2020,37(S2):15-21. [16] KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Imagenet classification with deep convolutional neural networks[J].Advances in Neural Information Processing Systems,2012,25:1097-1105. [17] SERMANET P,EIGEN D,ZHANG X,et al.Overfeat:integrated recognition,localization and detection using convolutional networks[C]//2nd International Conference on Learning Representations,2014. [18] SZEGEDY C,LIU W,JIA Y,et al.Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2015:1-9. [19] SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[J].arXiv:1409. 1556,2014. [20] HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:770-778. [21] HU J,SHEN L,ALBANIE S,et al.Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:7132-7141. [22] XIAO Y,TIAN Z,YU J,et al.A review of object detection based on deep learning[J].Multimedia Tools and Applications,2020,79(33):23729-23791. [23] LECUN Y,BOTTOU L,BENGIO Y,et al.Gradient-based learning applied to document recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324. [24] KRIZHEVSKY A.Learning multiple layers of features from tiny images[D].University of Tront,2009. [25] EVERINGHAM M,VAN GOOL L,WILLIAMS C K I,et al.The pascal visual object classes(voc) challenge[J].International Journal of Computer Vision,2010,88(2):303-338. [26] EVERINGHAM M,ESLAMI S M A,VAN GOOL L,et al.The pascal visual object classes challenge:a retrospective[J].International Journal of Computer Vision,2015,111(1):98-136. [27] RUSSAKOVSKY O,DENG J,SU H,et al.Imagenet large scale visual recognition challenge[J].International Journal of Computer Vision,2015,115(3):211-252. [28] LIN T Y,MAIRE M,BELONGIE S,et al.Microsoft coco:common objects in context[C]//European Conference on Computer Vision.Cham:Springer,2014:740-755. [29] KUZNETSOVA A,ROM H,ALLDRIN N,et al.The open images dataset v4[J].International Journal of Computer Vision,2020,128(7):1956-1981. [30] ZHOU B,LAPEDRIZA A,KHOSLA A,et al.Places:a 10 million image database for scene recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,40(6):1452-1464. [31] XIAO J,EHINGER K A,HAYS J,et al.Sun database:exploringa large collection of scene categories[J].Inter-national Journal of Computer Vision,2016,119(1):3-22. [32] WANG S.Research towards yolo-series algorithms:comparison and analysis of object detection models for real-time UAV applications[J].Journal of Physics:Conference Series,2021,1948(1):012021. [33] KANG H J.Real-time object detection on 640×480 image with VGG16+SSD[C]//2019 International Conference on Field-Programmable Technology(ICFPT),2019. [34] ZHONG Z,ZHENG L,KANG G,et al.Random erasing data augmentation[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2020:13001-13008. [35] BOCHKOVSKIY A,WANG C Y,LIAO H Y M.Yolov4:optimal speed and accuracy of object detection[J].arXiv:2004.10934,2020. [36] INOUE H.Data augmentation by pairing samples for images classification[J].arXiv:1801.02929,2018. [37] ZHANG H,CISSE M,DAUPHIN Y N,et al.Mixup:beyond empirical risk minimization[C]//International Conference on Learning Representations,2018. [38] DEVRIES T,TAYLOR G W.Improved regularization of convolutional neural networks with cutout[J].arXiv:1708. 04552,2017. [39] YUN S,HAN D,OH S J,et al.Cutmix:regularization strategy to train strong classifiers with localizable features[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2019:6023-6032. [40] GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al.Generative adversarial nets[J].Advances in neural Information Processing Systems,2014,27. [41] CUBUK E D,ZOPH B,MANE D,et al.Autoaugment:learning augmentation strategies from data[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:113-123. [42] HO D,LIANG E,CHEN X,et al.Population based augmentation:efficient learning of augmentation policy schedules[C]//International Conference on Machine Learning,2019:2731-2741. [43] LIM S,KIM I,KIM T,et al.Fast autoaugment[J].Advances in Neural Information Processing Systems,2019,32:6665-6675. [44] 王浩,雷印杰,陈浩楠.改进YOLOV3实时交通标志检测算法[J/OL].计算机工程与应用:1-9[2021-08-20].http://kns.cnki.net/kcms/detail/11.2127.TP.20210330.1540.018.html. WANG H,LEI Y J,CHEN H N.Real time traffic sign detection algorithm based on improved YOLOV3[J/OL].Computer Engineering and Applications:1-9[2021-08-20].http://kns.cnki.net/kcms/detail/11.2127.TP.20210330.1540. 018.html. [45] 谈世磊,别雄波,卢功林,等.基于YOLOv5网络模型的人员口罩佩戴实时检测[J].激光杂志,2021,42(2):147-150. TAN S L,BIE X B,LU G L,et al.Real-time detection for mask-wearing of personnel based on YOLOv5 network model[J].Laser Journal,2021,42(2):147-150. [46] DAI X,YUAN X,WEI X.Data augmentation for thermal infrared object detection with cascade pyramid generative adversarial network[J].Applied Intelligence,2021,52(6):1-15. [47] ZHU D,XIA S,ZHAO J,et al.Diverse sample generation with multi-branch conditional generative adversarial network for remote sensing objects detection[J].Neurocomputing,2020,381:40-51. [48] 李文婧,徐国伟,孔维刚,等.基于改进YOLOv4的植物叶茎交点目标检测研究[J].计算机工程与应用,2022,58(4):221-228. LI W J,XU G W,KONG W G,et al.Research on target detection of plant leaf-stem intersection based on improved YOLOv4[J].Computer Engineering and Applications,2022,58(4):221-228. [49] ARTHUR D,VASSILVITSKII S.K-means++:the advantages of careful seeding[R].Stanford,2006. [50] GONG J,ZHAO J,LI F,et al.Vehicle detection in thermal images with an improved yolov3-tiny[C]//2020 IEEE International Conference on Power,Intelligent Computing and Systems(ICPICS),2020:253-256. [51] 刘紫燕,袁磊,朱明成,等.融合SPP和改进FPN的YOLOv3交通标志检测[J].计算机工程与应用,2021,57(7):164-170. LIU Z Y,YUAN L,ZHU M C,et al.YOLOv3 traffic sign detection based on SPP and improved FPN[J].Computer Engineering and Applications,2021,57(7):164-170. [52] 翁玉尚,肖金球,夏禹.改进Mask R-CNN算法的带钢表面缺陷检测[J].计算机工程与应用,2021,57(19):235-242. WENG Y S,XIAO J Q,XIA Y.Strip surface defect detection based on improved Mask R-CNN algorithm[J].Computer Engineering and Applications,2021,57(19):235-242. [53] BAHMANI B,MOSELEY B,VATTANI A,et al.Scalable k-means++[J].Proceedings of the VLDB Endowment,2012,5(7):622-633. [54] 姜文志,李炳臻,顾佼佼,等.基于改进YOLO V3的舰船目标检测算法[J].电光与控制,2021,28(6):52-56. JIANG W Z,LI B Z,GU J J,et al.A ship target detection algorithm based on improved YOLO V3[J].Electronics Optics and Control,2021,28(6):52-56. [55] 李云红,张轩,李传真,等.融合DBSCAN的改进YOLOv3目标检测算法[J/OL].计算机工程与应用:1-12[2021-09-24].http://kns.cnki.net/kcms/detail/11.2127.TP.20210327. 1437.002.html. LI Y H,ZHANG X,LI C Z,et al.Improved YOLOv3 target detection algorithm combined with DBSCAN[J/OL].Computer Engineering and Applications:1-12[2021-09-24].http://kns.cnki.net/kcms/detail/11.2127.TP.20210327. 1437.002.html. [56] ZHANG Y,SONG C,ZHANG D.Deep learning-based object detection improvement for tomato disease[J].IEEE Access,2020,8:56607-56614. [57] HUANG G,LIU Z,VAN DER MAATEN L,et al.Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:4700-4708. [58] LIN T Y,DOLLáR P,GIRSHICK R,et al.Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:2117-2125. [59] LIU S,QI L,QIN H,et al.Path aggregation network for instance segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:8759-8768. [60] GIRSHICK R.Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision,2015:1440-1448. [61] XIE S,GIRSHICK R,DOLLáR P,et al.Aggregated residual transformations for deep neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:1492-1500. [62] TAN M,LE Q.Efficientnet:rethinking model scaling for convolutionalneural networks[C]//International Conference on Machine Learning,2019:6105-6114. [63] TAN M,PANG R,LE Q V.Efficientdet:scalable and efficient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:10781-10790. [64] 伍锡如,凌星雨.基于改进的Faster RCNN面部表情检测算法[J].智能系统学报,2021,16(2):210-217. WU X R,LING X Y.Facial expression recognition based on improved Faster RCNN[J].CAAI Transactions on Intelligent Systems,2021,16(2):210-217. [65] ZHAI S P,SHANG D R,WANG S H,et al.DF-SSD:an improved SSD object detection algorithm based on dense net and feature fusion[J].IEEE Access,2020,8:24344-24357. [66] 喻丽春,刘金清.基于改进Mask R-CNN的火焰图像识别算法[J].计算机工程与应用,2020,56(21):194-198. YU L C,LIU J Q.Fire image recognition algorithm based on improved mask R-CNN[J].Computer Engineering and Applications,2020,56(21):194-198. [67] 陈睿龙,罗磊,蔡志平,等.基于深度学习的实时吸烟检测算法[J].计算机科学与探索,2021,15(2):327-337. CHEN R l,LUO L,CAI Z P,et al.Algorithm for real-time smoking detection based on deep learning[J].Journal of Frontiers of Computer Science and Technology,2021,15(2):327-337. [68] 顾恭,徐旭东.改进YOLOv3的车辆实时检测与信息识别技术[J].计算机工程与应用,2020,56(22):173-184. GU G,XU X D.Real-time vehicle detection and infor-mation recognition technology based on YOLOv3 improved algorithm[J].Computer Engineering and Applications,2020,56(22):173-184. [69] 李祥兵,陈炼.基于改进Faster-RCNN的自然场景人脸检测[J].计算机工程,2021,47(1):210-216. LI X B,CHEN L.Face Detection in natural scene based on improved Faster-RCNN[J].Computer Engineering,2021,47(1):210-216. [70] 罗晖,贾晨,芦春雨,等.基于改进Faster R-CNN的钢轨踏面块状伤损检测方法[J].计算机应用,2021,41(3):904-910. LUO H,JIA C,LU C Y,et al.Rail tread block defects detection method based on improved Faster R-CNN[J].Journal of Computer Applications,2021,41(3):904-910. [71] 宋艳艳,谭励,马子豪,等.改进YOLOV3算法的视频目标检测[J].计算机科学与探索,2021,15(1):163-172. SONG Y Y,TAN L,MA Z H,et al.Video target detection based on improved YOLOV3 algorithm[J].Journal of Frontiers of Computer Science and Technology,2021,15(1):163-172. [72] IOFFE S,SZEGEDY C.Batch normalization:accelerating deep network training by reducing internal covariate shift[C]//International Conference on Machine Learning,2015:448-456. [73] SZEGEDY C,VANHOUCKE V,IOFFE S,et al.Rethinking the inception architecture for computer vision[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:2818-2826. [74] SZEGEDY C,IOFFE S,VANHOUCKE V,et al.Inception-v4,inception-resnet and the impact of residual connections on learning[C]//Thirty-first AAAI Conference on Artificial Intelligence,2017. [75] FARHADI A,REDMON J.Yolov3:an incremental improvement[J].arXiv:1804.02767,2018. [76] 郭继峰,孙文博,庞志奇,等.一种改进YOLOv4的交通标志识别算法[J/OL].小型微型计算机系统:1-7[2021-10-27].http://kns.cnki.net/kcms/detail/21.1106.TP.20210623. 1130.004.html. GUO J F,SUN W B,PANG Z Q,et al.Improved traffic sign recognition algorithm for Yolov4[J/OL].Journal of Chinese Computer Systems:1-7[2021-10-27].http://kns.cnki.net/kcms/detail/21.1106.TP.20210623.1130.004.html. [77] SHI P,XU X,NI J,et al.Underwater biological detection algorithm based on improved Faster-RCNN[J].Water,2021,13(17):2420. [78] 袁小平,马绪起,刘赛.改进YOLOv3的行人车辆目标检测算法[J].科学技术与工程,2021,21(8):3192-3198. YUAN X P,MA X Q,LIU S.An improved algorithm of pedestrian and vehicle detection based on YOLOv3[J].Science Technology and Engineering,2021,21(8):3192-3198. [79] LI J,WEI Y,LIANG X,et al.Attentive contexts for object detection[J].IEEE Transactions on Multimedia,2016,19(5):944-954. [80] GHIASI G,LIN T Y,LE Q V.Nas-fpn:learning scalable feature pyramid architecture for object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:7036-7045. [81] CAO J,CHEN Q,GUO J,et al.Attention-guided context feature pyramid network for object detection[J].arXiv:2005.11475,2020. [82] HOWARD A,SANDLER M,CHU G,et al.Searching for mobilenetv3[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2019:1314-1324. [83] HOWARD A G,ZHU M,CHEN B,et al.Mobilenets:efficient convolutional neural networks for mobile vision applications[J].arXiv:1704.04861,2017. [84] SANDLER M,HOWARD A,ZHU M,et al.Mobilenetv2:inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:4510-4520. [85] 徐浩,杨德刚,蒋倩倩,等.基于SSD的轻量级车辆检测网络改进[J/OL].计算机工程与应用:1-10[2021-10-02].http://kns.cnki.net/kcms/detail/11.2127.TP.20210331.0930.002.html. XU H,YANG D G,JIANG Q Q,et al.Improvement of lightweight vehicle detection network based on SSD[J/OL].Computer Engineering and Applications:1-10[2021-10-02].http://kns.cnki.net/kcms/detail/11.2127.TP. 20210331.0930.002.html. [86] REDMON J,FARHADI A.YOLO9000:better,faster,stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:7263-7271. [87] REN S,HE K,GIRSHICK R,et al.Faster R-CNN:towards real-time object detection with region proposal networks[J].Advances in Neural Information Processing Systems,2015,28:91-99. [88] BODLA N,SINGH B,CHELLAPPA R,et al.Soft-NMS—improving object detection with one line of code[C]//Proceedings of the IEEE International Conference on Computer Vision,2017:5561-5569. [89] JIANG B,LUO R,MAO J,et al.Acquisition of localization confidence for accurate object detection[C]//Proceedings of the European Conference on Computer Vision(ECCV),2018:784-799. [90] ZHENG Z,WANG P,LIU W,et al.Distance-IoU loss:fasterand better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2020:12993-13000. [91] PAN Y,DONG F.Suppression and enhancement of overlapping bounding boxes scores in object detection[C]//2019 IEEE International Symposium on Signal Processing and Information Technology(ISSPIT),2019:1-4. [92] HE Y,ZHU C,WANG J,et al.Bounding box regression with uncertainty for accurate object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:2888-2897. [93] LIU S,HUANG D,WANG Y.Adaptive nms:refining pedestrian detection in a crowd[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:6459-6468. [94] BOLYA D,ZHOU C,XIAO F,et al.Yolact:real-time instance segmentation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2019:9157-9166. [95] ZHENG Z,WANG P,REN D,et al.Enhancing geometric factors in model learning and inference for object detection and instance segmentation[J].arXiv:2005.03572,2020. [96] WANG X,ZHANG R,KONG T,et al.Solov2:dynamic,faster and stronger[J].arXiv:2003.10152,2020. [97] LIN T Y,GOYAL P,GIRSHICK R,et al.Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision,2017:2980-2988. [98] 汪慧兰,戴舒,刘丹,等.交通场景中改进SSD算法的小尺度行人检测研究[J].计算机工程与应用,2022,58(2):201-207. WANG H L,DAI S,LIU D,et al.Small-scale pedestrian detection in traffic scenes based on improved SSD algorithm[J].Computer Engineering and Applications,2022,58(2):201-207. [99] 罗晖,贾晨,李健.基于改进YOLOv4的公路路面病害检测算法[J].激光与光电子学进展,2021,58(14):336-344. LUO H,JIA C,LI J.Road surface disease detection algorithm based on improved YOLOv4[J].Laser and Optoe-lectronics Progress,2021,58(14):336-344. [100] CHEN X,LI J.Research on an efficient single-stage multi-object detection algorithm[C]//2019 International Conference on Smart Grid and Electrical Automation(ICSGEA),2019. [101] BAO W,REN Y,LIANG D,et al.Defect detection algorithm of anti-vibration hammer based on improved cascade R-CNN[C]//2020 International Conference on Intelligent Computing and Human-Computer Interaction(ICHCI),2020. [102] LV S,LIU K,QIAO Y,et al.Automatic detection method for small size transmission lines defect based on improved YOLOv3[C]//2020 International Conference on Communications,Information System and Computer Engineering(CISCE),2020. [103] SHRIVASTAVA A,GUPTA A,GIRSHICK R.Training region-based object detectors with online hard example mining[J].IEEE Conference on Computer Vision & Pattern Recognition,2016:761-769. [104] CHEN K,LI J,LIN W,et al.Towards accurate one-stage object detection with ap-loss[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:5119-5127. [105] QIAN Q,CHEN L,LI H,et al.DR loss:improving object detection by distributional ranking[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:12164-12172. [106] CUI Y,JIA M,LIN T Y,et al.Class-balanced loss based on effectivenumber of samples[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:9268-9277. [107] REZATOFIGHI H,TSOI N,GWAK J Y,et al.Generalized intersection over union:a metric and a loss for bounding box regression[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:658-666. [108] WANG F,JIANG M,QIAN C,et al.Residual attention network for image classification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:3156-3164. [109] YUAN X,HUANG H,JIANG Z,et al.An object detection algorithm based on attention mechanism and lightweight network(AMLN)[C]//Proceedings of the 2020 the 4th International Conference on Innovation in Artificial Intelligence,2020:64-69. [110] WOO S,PARK J,LEE J Y,et al.Cbam:convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision(ECCV),2018:3-19. [111] DAI J,QI H,XIONG Y,et al.Deformable convolutional networks[C]//Proceedings of the IEEE International Conference on Computer Vision,2017:764-773. [112] ZHU X,HU H,LIN S,et al.Deformable convnets v2:more deformable,better results[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:9308-9316. [113] 喻清挺,喻维超,喻国平.基于改进R-FCN的交通标志检测[J/OL].计算机工程:1-7[2021-09-11].https://doi.org/10.19678/j.issn.1000-3428.0060093. YU Q T,YU W C,YU G P.Traffic sign detection based on improved R-FCN[J/OL].Computer Engineering:1-7[2021-09-11].https://doi.org/10.19678/j.issn.1000-3428. 0060093. [114] 王迪聪,白晨帅,邬开俊.基于深度学习的视频目标检测综述[J].计算机科学与探索,2021,15(9):1563-1577. WANG D C,BAI C S,WU K J.Survey of video object detection based on deep learning[J].Journal of Frontiers of Computer Science and Technology,2021,15(9):1563-1577. |
[1] | 王浩, 雷印杰, 陈浩楠. 改进YOLOV3实时交通标志检测算法[J]. 计算机工程与应用, 2022, 58(8): 243-248. |
[2] | 赵杰伦, 张兴忠, 董红月. 基于尺度不变特征金字塔的输电线路缺陷检测[J]. 计算机工程与应用, 2022, 58(8): 289-296. |
[3] | 石颉, 袁晨翔, 丁飞, 孔维相. SAR图像建筑物目标检测研究综述[J]. 计算机工程与应用, 2022, 58(8): 58-66. |
[4] | 周丽娜, 常笑, 胡枫. 利用邻接结构熵确定超网络关键节点[J]. 计算机工程与应用, 2022, 58(8): 76-82. |
[5] | 熊风光, 张鑫, 韩燮, 况立群, 刘欢乐, 贾炅昊. 改进的遥感图像语义分割研究[J]. 计算机工程与应用, 2022, 58(8): 185-190. |
[6] | 杨锦帆, 王晓强, 林浩, 李雷孝, 杨艳艳, 李科岑, 高静. 深度学习中的单阶段车辆检测算法综述[J]. 计算机工程与应用, 2022, 58(7): 55-67. |
[7] | 王斌, 李昕. 融合动态残差的多源域自适应算法研究[J]. 计算机工程与应用, 2022, 58(7): 162-166. |
[8] | 谭暑秋, 汤国放, 涂媛雅, 张建勋, 葛盼杰. 教室监控下学生异常行为检测系统[J]. 计算机工程与应用, 2022, 58(7): 176-184. |
[9] | 周天宇, 朱启兵, 黄敏, 徐晓祥. 基于轻量级卷积神经网络的载波芯片缺陷检测[J]. 计算机工程与应用, 2022, 58(7): 213-219. |
[10] | 张美玉, 刘跃辉, 侯向辉, 秦绪佳. 基于卷积网络的灰度图像自动上色方法[J]. 计算机工程与应用, 2022, 58(7): 229-236. |
[11] | 杨佳云, 么一诺, 于鲲, 柳秀梅, 于明鹤, 赵志滨. 目标检测中语义约束检查算法的研究与实现[J]. 计算机工程与应用, 2022, 58(7): 237-242. |
[12] | 张壮壮, 屈立成, 李翔, 张明皓, 李昭璐. 基于时空卷积神经网络的数据缺失交通流预测[J]. 计算机工程与应用, 2022, 58(7): 259-265. |
[13] | 许杰, 祝玉坤, 邢春晓. 基于深度强化学习的金融交易算法研究[J]. 计算机工程与应用, 2022, 58(7): 276-285. |
[14] | 张昊, 张小雨, 张振友, 李伟. 基于深度学习的入侵检测模型综述[J]. 计算机工程与应用, 2022, 58(6): 17-28. |
[15] | 陈嘉涛, 张泓凯, 黄燕平, 蓝公仆, 许景江, 秦嘉, 安林. 基于视频的生理参数测量技术及研究进展[J]. 计算机工程与应用, 2022, 58(6): 58-68. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||