计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (24): 29-46.DOI: 10.3778/j.issn.1002-8331.2206-0055
张蕊,孟晓曼,曾志远,金玮,武益超
出版日期:
2022-12-15
发布日期:
2022-12-15
ZHANG Rui, MENG Xiaoman, ZENG Zhiyuan, JIN Wei, WU Yichao
Online:
2022-12-15
Published:
2022-12-15
摘要: 点云数据蕴含丰富的空间信息,可以通过激光雷达、3D传感器等设备大量采集,被广泛应用于自动驾驶、虚拟现实、城市规划和3D重建等领域。点云语义分割作为3D场景理解、识别和各种应用的基础而受到广泛关注。但不规则的点云数据无法直接作为传统卷积神经网络的输入,而图卷积神经网络可以利用图卷积算子直接对点云数据进行特征提取,使得图卷积神经网络已逐步成为点云语义分割领域的一个重要研究方向。基于此,对图卷积神经网络在3D点云语义分割应用中的研究进展进行综述,根据图卷积的类型对基于图卷积神经网络的点云语义分割方法进行分类,按照不同类别对比分析主流方法的模型架构及其特点,描述几个相关点云语义分割领域常用的公共数据集和评价指标,对点云语义分割方法进行总结和展望。
张蕊, 孟晓曼, 曾志远, 金玮, 武益超. 图卷积神经网络在点云语义分割中的研究综述[J]. 计算机工程与应用, 2022, 58(24): 29-46.
ZHANG Rui, MENG Xiaoman, ZENG Zhiyuan, JIN Wei, WU Yichao. Review of Graph Convolutional Neural Networks in Point Cloud Semantic Segmentation[J]. Computer Engineering and Applications, 2022, 58(24): 29-46.
[1] 周汉飞,李禹,粟毅.利用多角度SAR数据实现三维成像[J].电子与信息学报,2013,35(10):2467-2474. ZHOU H F,LI Y,SU Y.Three-dimensional imaging with multi-aspect SAR data[J].Journal of Electronics & Information Technology,2013,35(10):2467-2474. [2] QI C R,LIU W,WU C X,et al.Frustum PointNets for 3D object detection from RGB-D data[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City,UT,USA:IEEE,2018:918-927. [3] CORDTS M,OMRAN M,RAMOS S,et al.The cityscapes dataset for semantic urban scene understanding[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas,NV,USA:IEEE,2016:3213-3223. [4] LIN T Y,MAIRE M,BELONGIE S,et al.Microsoft coco:common objects in context[C]//European Conference on Computer Vision.Cham:Springer,2014:740-755. [5] NGUYEN A,LE B.3D point cloud segmentation:a survey[C]//2013 6th IEEE Conference on Robotics,Automation and Mechatronics,Manila,Philippines,2013:225-230. [6] 张蕊.基于激光点云的复杂三维场景多态目标语义分割技术研究[D].郑州:战略支援部队信息工程大学,2018. ZHANG R.Research on polymorphic object semantic segmentation of complex 3D scenes based on laser point clouds[D].Zhengzhou:Strategic Support Forces Information Engineering University,2018. [7] ZHANG R,LI G,WUNDERLICH T,et al.A survey on deep learning-based precise boundary recovery of semantic segmentation for images and point clouds[J].International Journal of Applied Earth Observation and Geoinformation,2021,102:102411. [8] LECUN Y,BOTTOU L,BENGIO Y,et al.Gradient-based learning applied to document recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324. [9] AJIT A,ACHARYA K,SAMANTA A.A review of convolutional neural networks[C]//2020 International Conference on Emerging Trends in Information Technology and Engineering(ic-ETITE).Vellore,India:IEEE,2020:1-5. [10] LU Y,CHEN Y,ZHAO D,et al.Graph-FCN for image semantic segmentation[C]//International Symposium on Neural Networks.Cham:Springer,2019:97-105. [11] GARCIA-GARCIA A,ORTS-ESCOLANO S,OPREA S,et al.A survey on deep learning techniques for image and video semantic segmentation[J].Applied Soft Computing,2018,70:41-65. [12] HUANG Z,WANG X,HUANG L,et al.Ccnet:criss-cross attention for semantic segmentation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2019:603-612. [13] 景庄伟,管海燕,臧玉府,等.基于深度学习的点云语义分割研究综述[J].计算机科学与探索,2021,15(1):1-26. JING Z W,GUAN H Y,ZANG Y F,et al.Survey of point cloud semantic segmentation based on deep learning[J].Journal of Frontiers of Computer Science and Technology,2021,15(1):1-26. [14] 王涛,王文举,蔡宇.基于深度学习的三维点云语义分割方法研究[J].计算机工程与应用,2021,57(23):18-26. WANG T,WANG W J,CAI Y.Research of deep learning-based semantic segmentation for 3D point cloud[J].Computer Engineering and Applications,2021,57(23):18-26. [15] 赵佳琦,周勇,何欣,等.基于深度学习的点云分割研究进展分析[J].电子与信息学报,2021,44:1-15. ZHAO J Q,ZHOU Y,HE X,et al.Research progress analysis of point cloud segmentation based on deep learning[J].Journal of Electronics & Information Technology,2021,44:1-15. [16] 徐冰冰,岑科廷,黄俊杰,等.图卷积神经网络综述[J].计算机学报,2020,43(5):755-780. XU B B,CEN K T,HUANG J J,et al.A survey on graph convolutional neural network[J].Chinese Journal of Computers,2020,43(5):755-780. [17] ZHANG S,TONG H,XU J,et al.Graph convolutional networks:a comprehensive review[J].Computational Social Networks,2019,6(1):1-23. [18] YOO H J.Deep convolution neural networks in computer vision:a review[J].IEIE Transactions on Smart Processing and Computing,2015,4(1):35-43. [19] 周飞燕,金林鹏,董军.卷积神经网络研究综述[J].计算机学报,2017,40(6):1229-1251. ZHOU F Y,JIN L P,DONG J.Review of convolutional neural network[J].Chinese Journal of Computers,2017,40(6):1229-1251. [20] 尹宝才,王文通,王立春.深度学习研究综述[J].北京工业大学学报,2015,41(1):48-59. YIN B C,WANG W T,WANG L C.Review of deep learning[J].Journal of Beijing University of Technology,2015,41(1):48-59. [21] VOULODIMOS A,DOULAMIS N,DOULAMIS A,et al.Deep learning for computer vision:a brief review[J].Computational Intelligence and Neuroscience,2018:7068349. [22] WU B C,WAN A,YUE X Y,et al.SqueezeSeg:convolutional neural nets with recurrent CRF for real-time road-object segmentation from 3D LiDAR point cloud[C]//2018 IEEE International Conference on Robotics and Automation.Brisbane,QLD,Australia:IEEE,2018:1887-1893. [23] WU B C,ZHOU X Y,ZHAO S C,et al.SqueezeSegV2:improved model structure and unsupervised domain adaptation for road-object segmentation from a LiDAR point cloud[C]//2019 International Conference on Robotics and Automation(ICRA).Montreal,QC,Canada:IEEE,2019:4376-4382. [24] IMAD M,DOUKHI O,LEE D J.Transfer learning based semantic segmentation for 3D object detection from point cloud[J].Sensors,2021,21(12):3964. [25] WANG P S,LIU Y,GUO Y X,et al.O-CNN:Octree-based convolutional neural networks for 3D shape analysis[J].ACM Transactions on Graphics(TOG),2017,36(4):1-11. [26] TCHAPMI L,CHOY C,ARMENI I,et al.Segcloud:semantic segmentation of 3D point clouds[C]//2017 International Conference on 3D Vision(3DV),2017:537-547. [27] MENG H Y,GAO L,LAI Y K,et al.VV-net:voxel VAE net with group convolutions for point cloud segmentation[C]//2019 IEEE/CVF International Conference on Computer Vision(ICCV).Seoul,Korea(South):IEEE,2019:8499-8507. [28] SU H,MAJI S,KALOGERAKIS E,et al.Multi-view convolutional neural networks for 3D shape recognition[C]//2015 IEEE International Conference on Computer Vision.Santiago,Chile:IEEE,2015:945-953. [29] YU T,MENG J J,YUAN J S.Multi-view harmonized bilinear network for 3D object recognition[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City,UT,USA:IEEE,2018:186-194. [30] JIANG J,BAO D,CHEN Z,et al.MLVCNN:multi-loop-view convolutional neural network for 3D shape retrieval[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2019:8513-8520. [31] QI C R,SU H,MO K,et al.Pointnet:deep learning on point sets for 3d classification and segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Honolulu,HI,USA:IEEE,2017:77-85. [32] QI C R,YI L,SU H,et al.Pointnet++:deep hierarchical feature learning on point sets in a metric space[C]//31st Annual Conference on Neural Information Processing Systems,2017:5100-5109. [33] ZHANG Z Y,HUA B S,CHEN W,et al.Global context aware convolutions for 3D point cloud understanding[C]//2020 International Conference on 3D Vision(3DV).Fukuoka,Japan:IEEE,2020:210-219. [34] XU Y,FAN T,XU M,et al.Spidercnn:deep learning on point sets with parameterized convolutional filters[C]//Proceedings of the European Conference on Computer Vision(ECCV),2018:87-102. [35] HUA B S,TRAN M K,YEUNG S K.Pointwise convolutional neural networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City,UT,USA:IEEE,2018:984-993. [36] KOMARICHEV A,ZHONG Z C,HUA J.A-CNN:annularly convolutional neural networks on point clouds[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Long Beach,CA,USA:IEEE,2019:7413-7422. [37] LIU F Y,LI S P,ZHANG L Q,et al.3DCNN-DQN-RNN:a deep reinforcement learning framework for semantic parsing of large-scale 3D point clouds[C]//2017 IEEE International Conference on Computer Vision.Venice,Italy:IEEE,2017:5679-5688. [38] HUANG Q G,WANG W Y,NEUMANN U.Recurrent slice networks for 3D segmentation of point clouds[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City,UT,USA:IEEE,2018:2626-2635. [39] YE X,LI J,HUANG H,et al.3d recurrent neural networks with context fusion for point cloud semantic segmentation[C]//Proceedings of the European Conference on Computer Vision(ECCV),2018:403-417. [40] QIN C,YOU H,WANG L,et al.PointDAN:a multi-scale 3D domain adaption network for point cloud representation[C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems,2019:7192-7203. [41] HAN Z Z,WANG X Y,LIU Y S,et al.Multi-angle point cloud-VAE:unsupervised feature learning for 3D point clouds from multiple angles by joint self-reconstruction and half-to-half prediction[C]//2019 IEEE/CVF International Conference on Computer Vision(ICCV).Seoul,Korea(South):IEEE,2019:10441-10450. [42] CHEN N L,LIU L J,CUI Z M,et al.Unsupervised learning of intrinsic structural representation points[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Seattle,WA,USA:IEEE,2020:9118-9127. [43] WANG Y,SUN Y,LIU Z,et al.Dynamic graph CNN for learning on point clouds[J].ACM Transactions on Graphics,2019,38(5):1-12. [44] ZHANG K,HAO M,WANG J,et al.Linked dynamic graph CNN:learning on point cloud via linking hierarchical features[J].arXiv:1904.10014,2019. [45] HUANG G,LIU Z,VAN DER MAATEN L,et al.Densely connected convolutional networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition.Honolulu,HI,USA:IEEE,2017:2261-2269. [46] XIU H Y,SHINOHARA T,MATSUOKA M.Dynamic-scale graph convolutional network for semantic segmentation of 3D point cloud[C]//2019 IEEE International Symposium on Multimedia.San Diego,CA,USA:IEEE,2019:2711-2717. [47] LIU J X,NI B B,LI C Y,et al.Dynamic points agglomeration for hierarchical point sets learning[C]//2019 IEEE/CVF International Conference on Computer Vision(ICCV).Seoul,Korea(South):IEEE,2019:7545-7554. [48] LIANG Z D,YANG M,DENG L Y,et al.Hierarchical depthwise graph convolutional neural network for 3D semantic segmentation of point clouds[C]//2019 International Conference on Robotics and Automation(ICRA).Montreal,QC,Canada:IEEE,2019:8152-8158. [49] ALI KHAN S,SHI Y L,SHAHZAD M,et al.FGCN:deep feature-based graph convolutional network for semantic segmentation of urban 3D point clouds[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops(CVPRW).Seattle,WA,USA:IEEE,2020:778-787. [50] LUO N,YU H,HUO Z,et al.KVGCN:a KNN searching and VLAD combined graph convolutional network for point cloud segmentation[J].Remote Sensing,2021,13(5):1003. [51] JéGOU H,DOUZE M,SCHMID C,et al.Aggregating local descriptors into a compact image representation[C]//2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,San Francisco,CA,USA,2010:3304-3311. [52] LIN Z H,HUANG S Y,WANG Y C F.Learning of 3D graph convolution networks for point cloud analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2022,44(8):4212-4224. [53] LI R,ZHANG Y,NIU D,et al.PointVGG:graph convolutional network with progressive aggregating features on point clouds[J].Neurocomputing,2021,429:187-198. [54] WANG Y,ZHANG Z,ZHONG R,et al.Densely connected graph convolutional network for joint semantic and instance segmentation of indoor point clouds[J].ISPRS Journal of Photogrammetry and Remote Sensing,2021,182:67-77. [55] CHEN L,ZHANG Q.DDGCN:graph convolution network based on direction and distance for point cloud learning[J].The Visual Computer,2022:1-11. [56] BRUNA J,ZAREMBA W,SZLAM A,et al.Spectral networks and locally connected networks on graphs[C]//2nd International Conference on Learning Representations,2014. [57] DEFFERRARD M,BRESSON X,VANDERGHEYNST P.Convolutional neural networks on graphs with fast localized spectral filtering[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems,2016:3844-3852. [58] WANG C,SAMARI B,SIDDIQI K.Local spectral graph convolution for point set feature learning[C]//Proceedings of the European Conference on Computer Vision(ECCV),2018:52-66. [59] TE G,HU W,ZHENG A,et al.Rgcnn:regularized graph CNN for point cloud segmentation[C]//Proceedings of the 26th ACM International Conference on Multimedia,2018:746-754. [60] LU Q,CHEN C,XIE W,et al.PointNGCNN:deep convolutional networks on 3D point clouds with neighborhood graph filters[J].Computers & Graphics,2020,86:42-51. [61] LI W J,MA Q W,TIAN W C,et al.Graph convolution network with double filter for point cloud segmentation[C]//2020 5th International Conference on Intelligent Informatics and Biomedical Sciences(ICIIBMS),Okinawa,Japan,2020:168-173. [62] CHEN C,FRAGONARA L Z,TSOURDOS A.GAPNet:graph attention based point neural network for exploiting local feature of point cloud[J].arXiv:1905.08705,2019. [63] LI Z,ZHANG J,LI G,et al.Graph attention neural networks for point cloud recognition[C]//2019 IEEE International Conference on Multimedia and Expo(ICME),2019:387-392. [64] WANG L,HUANG Y C,HOU Y L,et al.Graph attention convolution for point cloud semantic segmentation[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Long Beach,CA,USA:IEEE,2019:10288-10297. [65] CHEN C,QIAN S,FANG Q,et al.Hapgn:hierarchical attentive pooling graph network for point cloud segmentation[J].IEEE Transactions on Multimedia,2020,23:2335-2346. [66] MA Y N,GUO Y L,LIU H,et al.Global context reasoning for semantic segmentation of 3D point clouds[C]//2020 IEEE Winter Conference on Applications of Computer Vision.Snowmass,CO,USA:IEEE,2020:2920-2929. [67] JIANG T,SUN J,LIU S,et al.Hierarchical semantic segmentation of urban scene point clouds via group proposal and graph attention network[J].International Journal of Applied Earth Observation and Geoinformation,2021,105:102626. [68] HU H,WANG F,LE H.VA-GCN:a vector attention graph convolution network for learning on point clouds[J].arXiv:2106.00227,2021. [69] KANG Z,LI N.PyramNet:point cloud pyramid attention network and graph embedding module for classification and segmentation[J].arXiv:1906.03299,2019. [70] XIE Z,CHEN J,PENG B.Point clouds learning with attention-based graph convolution networks[J].Neurocomputing,2020,402:245-255. [71] DU Z,YE H,CAO F.A novel local-global graph convolutional method for point cloud semantic segmentation[J].IEEE Transactions on Neural Networks and Learning Systems,2022. [72] HE K M,ZHANG X Y,REN S Q,et al.Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas,NV,USA:IEEE,2016:770-778. [73] YU F,KOLTUN V.Multi-scale context aggregation by dilated convolutions[C]//International Commission for Labour Rights(ICLR 2016),2015. [74] LI G H,MüLLER M,THABET A,et al.DeepGCNs:can GCNs go as deep as CNNs?[C]//2019 IEEE/CVF International Conference on Computer Vision(ICCV).Seoul,Korea(South):IEEE,2019:9266-9275. [75] LI G,XIONG C,THABET A,et al.DeeperGCN:all you need to train deeper gcns[J].arXiv:2006.07739,2020. [76] LI G,MüLLER M,QIAN G,et al.DeepGCNs:making GCNs go as deep as CNNs[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2021,99:1. [77] 柴玉晶,马杰,刘红.用于点云语义分割的深度图注意力卷积网络[J].激光与光电子学进展,2021,58(12):192-199. CHAI Y J,MA J,LIU H.Deep graph attention convolution network for point cloud semantic segmentation[J].Laser & Optoelectronics Progress,2021,58(12):192-199. [78] WANG X Y,JIANG B,ZHANG Z H,et al.DeepGCNs-att for point cloud semantic segmentation[J].Journal of Physics:Conference Series,2021(1):012059. [79] JIANG B,WANG X,HUANG L,et al.DeepGCNs-Att:Point cloud semantic segmentation with contextual point representations[J].Journal of Intelligent & Fuzzy Systems,2022,42(4):3827-3836. [80] JIANG M,WU Y,ZHAO T,et al.Pointsift:a sift-like network module for 3d point cloud semantic segmentation[J].arXiv:1807.00652,2018. [81] CAI G,JIANG Z,WANG Z,et al.Spatial aggregation net:point cloud semantic segmentation based on multi-directional convolution[J].Sensors,2019,19(19):4329. [82] ZHANG W,SU S,WANG B,et al.Local k-NNs pattern in omni-direction graph convolution neural network for 3D point clouds[J].Neurocomputing,2020,413:487-498. [83] FENG M,ZHANG L,LIN X,et al.Point attention network for semantic segmentation of 3D point clouds[J].Pattern Recognition,2020,107:107446. [84] DU J,JIANG Z,HUANG S,et al.Point cloud semantic segmentation network based on multi-scale feature fusion[J].Sensors,2021,21(5):1625. [85] ENGELMANN F,KONTOGIANNI T,LEIBE B.Dilated point convolutions:on the receptive field size of point convolutions on 3D point clouds[C]//2020 IEEE International Conference on Robotics and Automation,Paris,France,2020:9463-9469. [86] WAN J,XIE Z,XU Y,et al.DGANet:a dilated graph attention-based network for local feature extraction on 3D point clouds[J].Remote Sensing,2021,13(17):3484. [87] WANG L,WU J J,LIU X Y,et al.Semantic segmentation of large-scale point clouds based on dilated nearest neighbors graph[J].Complex & Intelligent Systems,2022,8(5):3833-3845. [88] HU Q Y,YANG B,XIE L H,et al.RandLA-net:efficient semantic segmentation of large-scale point clouds[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Seattle,WA,USA:IEEE,2020:11105-11114. [89] ZHAO H S,JIANG L,JIA J Y,et al.Point transformer[C]//2021 IEEE/CVF International Conference on Computer Vision(ICCV).Montreal,QC,Canada:IEEE,2021:16239-16248. [90] MAO Y,SUN X,DIAO W,et al.Semantic segmentation for point cloud scenes via dilated graph feature aggregation and pyramid decoders[J].arXiv:2204.04944,2022. [91] LANDRIEU L,SIMONOVSKY M.Large-scale point cloud semantic segmentation with superpoint graphs[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City,UT,USA:IEEE,2018:4558-4567. [92] LANDRIEU L,BOUSSAHA M.Point cloud oversegmentation with graph-structured deep metric learning[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Long Beach,CA,USA:IEEE,2019:7432-7441. [93] LI Y,MA L F,ZHONG Z L,et al.TGNet:geometric graph CNN on 3-D point cloud segmentation[J].IEEE Transactions on Geoscience and Remote Sensing,2020,58(5):3588-3600. [94] BAZAZIAN D,NAHATA D.DCG-net:dynamic capsule graph convolutional network for point clouds[J].IEEE Access,2020,8:188056-188067. [95] LEI H,AKHTAR N,MIAN A.Spherical kernel for efficient graph convolution on 3d point clouds[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2021,43(10):3664-3680. [96] ZHOU H R,FENG Y D,FANG M S,et al.Adaptive graph convolution for point cloud analysis[C]//2021 IEEE/CVF International Conference on Computer Vision(ICCV).Montreal,QC,Canada:IEEE,2021:4945-4954. [97] KIM S,ALEXANDER D C.AGCN:adversarial graph convolutional network for 3D point cloud segmentation[C]//British Machine Vision Conference(BMVC),2021. [98] SUN Y L,MIAO Y W,CHEN J Z,et al.PGCNet:patch graph convolutional network for point cloud segmentation of indoor scenes[J].The Visual Computer,2020,36(10):2407-2418. [99] MO K C,ZHU S L,CHANG A X,et al.PartNet:a large-scale benchmark for fine-grained and hierarchical part-level 3D object understanding[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Long Beach,CA,USA:IEEE,2019:909-918. [100] YI L,KIM V G,CEYLAN D,et al.A scalable active framework for region annotation in 3d shape collections[J].ACM Transactions on Graphics(ToG),2016,35(6):1-12. [101] ARMENI I,SENER O,ZAMIR A R,et al.3D semantic parsing of large-scale indoor spaces[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas,NV,USA:IEEE,2016:1534-1543. [102] DAI A,CHANG A X,SAVVA M,et al.ScanNet:richly-annotated 3D reconstructions of indoor scenes[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition.Honolulu,HI,USA:IEEE,2017:2432-2443. [103] HACKEL T,SAVINOV N,LADICKY L,et al.Semantic3d net:a new large-scale point cloud classification benchmark[J].ISPRS Annals of the Photogrammetry,Remote Sensing and Spatial Information Sciences,2017:91-98. [104] GAIDON A,WANG Q,CABON Y,et al.Virtual worlds as proxy for multi-object tracking analysis[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas,NV,USA:IEEE,2016:4340-4349. [105] ROYNARD X,DESCHAUD J E,GOULETTE F.Paris-Lille-3D:a large and high-quality ground-truth urban point cloud dataset for automatic segmentation and classification[J].The International Journal of Robotics Research,2018,37(6):545-557. |
[1] | 李翔, 张涛, 张哲, 魏宏杨, 钱育蓉. Transformer在计算机视觉领域的研究综述[J]. 计算机工程与应用, 2023, 59(1): 1-14. |
[2] | 万朵, 胡谋法, 肖山竹, 张焱. 面向边缘智能计算的异构并行计算平台综述[J]. 计算机工程与应用, 2023, 59(1): 15-25. |
[3] | 王鹏, 王玉林, 焦博文, 王洪昌, 于奕轩. 基于YOLOv5的道路目标检测算法研究[J]. 计算机工程与应用, 2023, 59(1): 117-125. |
[4] | 刘钊, 杨帆, 司亚中. 时域非填充网络视频行为识别算法研究[J]. 计算机工程与应用, 2023, 59(1): 162-168. |
[5] | 吴良武, 周永霞, 王宇航, 朱钰萍. 多注意力机制金字塔池化金手指划痕分割方法[J]. 计算机工程与应用, 2023, 59(1): 213-220. |
[6] | 田敏, 刘名果, 陈立家, 韩宗桓, 兰天翔, 梁倩. 面向样本扩充的新型风格迁移网络研究[J]. 计算机工程与应用, 2023, 59(1): 228-235. |
[7] | 张海涛, 苏琳. 结合知识图谱的变分自编码器零样本图像识别[J]. 计算机工程与应用, 2023, 59(1): 236-243. |
[8] | 郭志涛, 周峰, 赵琳琳, 袁金丽, 卢成钢. 边缘保护与多阶段网络相结合的LDCT图像去噪[J]. 计算机工程与应用, 2023, 59(1): 252-258. |
[9] | 谭荣杰, 洪智勇, 余文华, 曾志强. 非独立同分布数据下的去中心化联邦学习策略[J]. 计算机工程与应用, 2023, 59(1): 269-277. |
[10] | 高广尚. 深度学习推荐模型中的注意力机制研究综述[J]. 计算机工程与应用, 2022, 58(9): 9-18. |
[11] | 吉梦, 何清龙. AdaSVRG:自适应学习率加速SVRG[J]. 计算机工程与应用, 2022, 58(9): 83-90. |
[12] | 罗向龙, 郭凰, 廖聪, 韩静, 王立新. 时空相关的短时交通流宽度学习预测模型[J]. 计算机工程与应用, 2022, 58(9): 181-186. |
[13] | 阿里木·赛买提, 斯拉吉艾合麦提·如则麦麦提, 麦合甫热提, 艾山·吾买尔, 吾守尔·斯拉木, 吐尔根·依不拉音. 神经机器翻译面对句长敏感问题的研究[J]. 计算机工程与应用, 2022, 58(9): 195-200. |
[14] | 陈一潇, 阿里甫·库尔班, 林文龙, 袁旭. 面向拥挤行人检测的CA-YOLOv5[J]. 计算机工程与应用, 2022, 58(9): 238-245. |
[15] | 方义秋, 卢壮, 葛君伟. 联合RMSE损失LSTM-CNN模型的股价预测[J]. 计算机工程与应用, 2022, 58(9): 294-302. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||