计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (1): 213-220.DOI: 10.3778/j.issn.1002-8331.2106-0307
吴良武,周永霞,王宇航,朱钰萍
WU Liangwu, ZHOU Yongxia, WANG Yuhang, ZHU Yuping
摘要: 针对传统图像处理方法和基于深度学习的分类模型对金手指表面划痕检测效果不理想的情况,提出了一种多注意力机制金字塔池化方法对金手指表面划痕进行语义分割。采用ResNet50模型获取输入图像的特征图;在金字塔的不同层中将特征图分成大小不同的子区域,然后对每个子区域进行平均池化操作;池化后的特征图加入多种注意力机制来提取关键部分的特征信息,并使用边界细化模块对边缘区域进一步精细化,提高分割准确度。通过上采样,将四种不同尺寸的特征图采用级联的方式对划痕区域进行特征融合;与带有整体信息的特征图拼接后经过卷积操作得到最后的预测结果。实验结果表明,本文采用的方法较其他常用分割模型在MIOU和MPA指标上具有明显提升,分别达到86.03%和94.35%,具有一定的应用价值。