计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (2): 1-11.DOI: 10.3778/j.issn.1002-8331.2205-0496
韦婷,李馨蕾,刘慧
出版日期:
2023-01-15
发布日期:
2023-01-15
WEI Ting, LI Xinlei, LIU Hui
Online:
2023-01-15
Published:
2023-01-15
摘要: 近年来,由于大规模数据集的出现,图像语义分割技术得到快速发展。但在实际场景中,并不容易获取到大规模、高质量的图像,图像的标注也需要消耗大量的人力和时间成本。为了摆脱对样本数量的依赖,小样本语义分割技术逐渐成为研究热点。当前小样本语义分割的方法主要利用了元学习的思想,按照不同的模型结构可划分为基于孪生神经网络、基于原型网络和基于注意力机制三大类。基于近年来小样本语义分割的发展现状,介绍了小样本语义分割各类方法的发展及优缺点,以及小样本语义分割任务中常用的数据集及实验设计。在此基础上,总结了小样本语义分割技术的应用场景及未来的发展方向。
韦婷, 李馨蕾, 刘慧. 小样本困境下的图像语义分割综述[J]. 计算机工程与应用, 2023, 59(2): 1-11.
WEI Ting, LI Xinlei, LIU Hui. Survey on Image Semantic Segmentation in Dilemma of Few-Shot[J]. Computer Engineering and Applications, 2023, 59(2): 1-11.
[1] LONG J,SHELHAMER E,DARRELL T.Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2015:3431-3440. [2] CHEN L C,ZHU Y,PAPANDREOU G,et al.Encoder-decoder with atrous separable convolution for semantic imagesegmentation[C]//Proceedings of the European Conference on Computer Vision(ECCV),2018:801-818. [3] LIU C,CHEN L C,SCHROFF F,et al.Auto-deeplab:hierarchical neural architecture search for semantic image segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2019:82-92. [4] FU J,LIU J,TIAN H,et al.Dual attention network for scene segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2019:3146-3154. [5] LATEEF F,RUICHEK Y.Survey on semantic segmentation using deep learning techniques[J].Neurocomputing,2019,338:321-348. [6] THOMA M.A survey of semantic segmentation[J].arXiv:1602.06541,2016. [7] VANSCHOREN J.Meta-learning:a survey[J].arXiv:1810. 03548,2018. [8] FEI-FEI L,FERGUS R,PERONA P.One-shot learning of object categories[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,28(4):594-611. [9] KANG B,LIU Z,WANG X,et al.Few-shot object detection via feature reweighting[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2019:8420-8429. [10] TIAN Y,WANG Y,KRISHNAN D,et al.Rethinking few-shot image classification:a good embedding is all you need?[C]//European Conference on Computer Vision.Cham:Springer,2020:266-282. [11] SHABAN A,BANSAL S,LIU Z,et al.One-shot learning for semantic segmentation[C]//British Machine Vision Conference,2017:1-13. [12] SNELL J,SWERSKY K,ZEMEL R.Prototypical networks for few-shot learning[C]//Advances in Neural Information Processing Systems,2017:4077-4087. [13] XIE G S,XIONG H,LIU J,et al.Few-shot semantic segmentation with cyclic memory network[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2021:7273-7282. [14] SCARSELLI F,GORI M,TSOI A C,et al.The graph neural network model[J].IEEE Transactions on Neural Networks,2008,20(1):61-80. [15] WANG Y,YAO Q,KWOK J T,et al.Generalizing from a few examples:a survey on few-shot learning[J].ACM Computing Surveys,2020,53(3):1-34. [16] 陈琼,杨咏,黄天林,等.小样本图像语义分割综述[J].数据与计算发展前沿,2021,3(6):17-34. CHEN Q,YANG Y,HUANG T L,et al.A survey on few-shot image semantic segmentation[J].Frontiers of Data and Computing,2021,3(6):17-34. [17] DONG N,XING E P.Few-shot semantic segmentation with prototype learning[C]//British Machine Vision Conference,2018. [18] KULIS B.Metric learning:a survey[J].Foundations and Trendsin Machine Learning,2013,5(4):287-364. [19] 李凡长.元学习研究综述[J].计算机学报,2021(2):422-446. LI F C.A survey on recent advances in meta-learning[J].Chinese Journal of Computers,2021(2):422-446. [20] CHICCO D.Siamese neural networks:an overview[J].Artificial Neural Networks,2021:73-94. [21] TIAN Z,ZHAO H,SHU M,et al.Prior guided feature enrichment network for few-shot segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2022,44(2):1050-1065. [22] ZHANG X,WEI Y,YANG Y,et al.Sg-one:similarity guidance network for one-shot semantic segmentation[J].IEEE Transactions on Cybernetics,2020,50(9):3855-3865. [23] YANG B,LIU C,LI B,et al.Prototype mixture models for few-shot semantic segmentation[C]//European Conference on Computer Vision.Cham:Springer,2020:763-778. [24] WANG H,ZHANG X,HU Y,et al.Few-shot semantic segmentation with democratic attention networks[C]//European Conference on Computer Vision.Cham:Springer,2020:730-746. [25] VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need[C]//Advances in Neural Information Processing Systems,2017:5998-6008. [26] BROMLEY J,GUYON I,LECUN Y,et al.Signature verification using a “siamese” time delay neural network[C]//Advances in Neural Information Processing Systems,1993. [27] KOCH G,ZEMEL R,SALAKHUTDINOV R.Siamese neural networks for one-shot image recognition[C]//The International Conference on Machine Learning,2015. [28] RAKELLY K,SHELHAMER E,DARRELL T,et al.Conditional networks for few-shot semantic segmentation[C]//International Conference on Learning Representations,2018:1-4. [29] ZHANG C,LIN G,LIU F,et al.Canet:class-agnostic segmentation networks with iterative refinement and attentive few-shot learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:5212-5221. [30] JIE L.Dynamic prototype convolution network for few-shot semantic segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2022. [31] GAIROLA S,HEMANI M,CHOPRA A,et al.Simpropnet:improved similarity propagation for few-shot image segmentation[C]//Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence,2020:573-579. [32] LANG C,CHENG G,TU B,et al.Learning what not to segment:a new perspective on few-shot segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2022. [33] ZHAO H,SHI J,QI X,et al.Pyramid scene parsing network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:2881-2890. [34] GATYS L A,ECKER A S,BETHGE M.A neural algorithm of artistic style[J].Journal of Vision,2016,16:326. [35] SIAM M,ORESHKIN B N,JAGERSAND M.Amp:adaptive masked proxies for few-shot segmentation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2019:5249-5258. [36] NGUYEN K,TODOROVIC S.Feature weighting and boosting for few-shot segmentation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2019:622-631. [37] ZHANG B,XIAO J,QIN T.Self-guided and cross-guided learning for few-shot segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2021:8312-8321. [38] WANG K,LIEW J H,ZOU Y,et al.Panet:few-shot image semantic segmentation with prototype alignment[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2019:9197-9206. [39] LIU Y,ZHANG X,ZHANG S,et al.Part-aware prototype network for few-shot semantic segmentation[C]//European Conference on Computer Vision.Cham:Springer,2020:142-158. [40] LI G,JAMPANI V,SEVILLA-LARA L,et al.Adaptive prototype learning and allocation for few-shot segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2021:8334-8343. [41] MCLACHLAN G J,KRISHNAN T.The EM algorithm and extensions[M].[S.l.]:John Wiley & Sons,2007. [42] ZHU K,ZHAI W,ZHA Z J,et al.Self-supervised tuning for few-shot segmentation[C]//Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence,2020:1019-1025. [43] LIU B,DING Y,JIAO J,et al.Anti-aliasing semantic reconstruction for few-shot semantic segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2021:9747-9756. [44] 景庄伟,管海燕,彭代峰,等.基于深度神经网络的图像语义分割研究综述[J].计算机工程,2020,46(10):1-17. JING Z W,GUAN H Y,PENG D F,et al.Survey of research in image semantic segmentation based on deep neural network[J].Computer Engineering,2020,46(10):1-17. [45] GUO H,ZHENG K,FAN X,et al.Visual attention consistency under image transforms for multi-label image classification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:729-739. [46] PANG Y,XIE J,KHAN M H,et al.Mask-guided attention network for occluded pedestrian detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2019:4967-4975. [47] 欧阳柳,贺禧,瞿绍军.全卷积注意力机制神经网络的图像语义分割[J].计算机科学与探索,2022,16(5):1136-1145. OUYANG L,HE X,QU S J.Fully convolutional neural network with attention module for semantic segmentation[J].Journal of Frontiers of Computer Science and Technology,2022,16(5):1136-1145. [48] YANG Y,MENG F,LI H,et al.A new local transformation module for few-shot segmentation[C]//International Conference on Multimedia Modeling.Berlin:Springer,2020:76-87. [49] 刘宇轩,孟凡满,李宏亮,等.一种结合全局和局部相似性的小样本分割方法[J].北京航空航天大学学报,2021,47(3):665-674. LIU Y X,MENG F M,LI H L,et al.A few shot segmentation method combining global and local similarity[J].Journal of Beijing University of Aeronautics and Astronautics,2021,47(3):665-674. [50] 徐辉,祝玉华,甄彤,等.深度神经网络图像语义分割方法综述[J].计算机科学与探索,2021,15(1):47-59. XU H,ZHU Y H,ZHEN T,et al.Survey of image semantic segmentation methods based on deep neural network[J].Journal of Frontiers of Computer Science and Technology,2021,15(1):47-59. [51] YANG X,WANG B,CHEN K,et al.Brinet:towards bridging the intra-class and inter-class gaps in one-shot segmentation[C]//British Machine Vision Conference,2020. [52] LU Z,HE S,ZHU X,et al.Simpler is better:few-shot semantic segmentation with classifier weight transformer[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2021:8741-8750. [53] MIN J,KANG D,CHO M.Hypercorrelation squeeze for few-shot segmentation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2021:6941-6952. [54] LI X,WEI T,CHEN Y P,et al.Fss-1000:a 1000-class dataset for few-shot segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:2869-2878. [55] CODELLA N C F,GUTMAN D,CELEBI M E,et al.Skin lesion analysis toward melanoma detection:a challenge at the 2017 International Symposium on Biomedical Imaging,hosted by the international skin imaging collaboration[C]//2018 IEEE 15th International Symposium on Biomedical Imaging,2018:168-172. [56] MENDON?A T,FERREIRA P M,MARQUES J S,et al.PH2-a dermoscopic image database for research and benchmarking[C]//2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society,2013:5437-5440. [57] LANDMAN B,XU Z B,IGELSIAS J,et al.Miccaimulti-atlas labeling beyond the cranial vault-workshop and challenges[C]//MICCAIMulti-Atlas Labeling Beyond the Cranial Vault-Workshop and Challenges,2015. [58] KAVUR A E,GEZER N S,BARI? M,et al.CHAOS challenge-combined(CT-MR) healthy abdominal organ segmentation[J].Medical Image Analysis,2021,69:101950. [59] EVERINGHAM M,ESLAMI S M,VAN GOOL L,et al.The pascal visual object classes challenge:a retrospective[J].International Journal of Computer Vision,2015,111(1):98-136. [60] HARIHARAN B,ARBELáEZ P,BOURDEV L,et al.Semantic contours from inverse detectors[C]//2011 International Conference on Computer Vision,2011:991-998. [61] LIN T Y,MAIRE M,BELONGIE S,et al.Microsoft coco:common objects in context[C]//European Conference on Computer Vision.Cham:Springer,2014:740-755. [62] RUSSAKOVSKY O,DENG J,SU H,et al.Imagenet large scale visual recognition challenge[J].International Journal of Computer Vision,2015,115(3):211-252. [63] REZATOFIGHI H,TSOI N,GWAK J Y,et al.Generalized intersection over union:a metric and a loss for bounding box regression[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:658-666. [64] CHEN L C,PAPANDREOU G,KOKKINOS I,et al.Deeplab:semantic image segmentation with deep convolutional nets,atrous convolution,and fully connected CRFs[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,40(4):834-848. [65] TANG H,LIU X,SUN S,et al.Recurrent mask refinement for few-shot medical image segmentation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2021:3918-3928. [66] OUYANG C,BIFFI C,CHEN C,et al.Self-supervision with superpixels:training few-shot medical image segmentation without annotation[C]//European Conference on Computer Vision.Cham:Springer,2020:762-780. [67] FEYJIE A R,AZAD R,PEDERSOLI M,et al.Semi-supervised few-shot learning for medical image segmentation[J].arXiv:2003.08462,2020. [68] GUO Y,WANG H,HU Q,et al.Deep learning for 3d point clouds:a survey[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,43(12):4338-4364. [69] CHEN X,ZHANG C,LIN G,et al.Compositional prototype network with multi-view comparision for few-shot point cloud semantic segmentation[J].arXiv:2012.14255,2020. [70] 王俊杰,张军航.基于多尺度特征融合的小样本遥感图像分割[J].华中科技大学学报(自然科学版),2022,50(3):62-67. WANG J J,ZHANG J H.Small sample remote sensing image segmentation based on multiscale feature fusion[J].Journal of Huazhong University of Science and Technology(Natural Science Edition),2022,50(3):62-67. [71] 朱祯悦,吕淑静,吕岳.基于图匹配网络的小样本违禁物品分割算法[J].红外与激光工程,2021,50(11):418-426. ZHU Z Y,LV S J,LV Y.Few-shot prohibited item segmentation algorithm based on graph matching network[J].Infrared and Laser Engineering,2021,50(11):418-426. [72] 许国良,毛骄.基于协同注意力的小样本的手机屏幕缺陷分割[J].电子与信息学报,2022,44(4):1476-1483. XU G L,MAO J.Few-shot segmentation on mobile phone screen defect based on co-attention[J].Journal of Electronics & Information Technology,2022,44(4):1476-1483. [73] 刘颖,雷研博,范九伦,等.基于小样本学习的图像分类技术综述[J].自动化学报,2021,47(2):297-315. LIU Y,LEI Y B,FAN J L,et al.Survey on image classification technology based on small sample learning[J].Acta Automatica Sinica,2021,47(2):297-315. [74] 张振伟,郝建国,黄健,等.小样本图像目标检测研究综述[J].计算机工程与应用,2022,58(5):1-11. ZHANG Z W,HAO J G,HUANG J,et al.Review of few-shot object detection[J].Computer Engineering and Applications,2022,58(5):1-11. [75] ZHOU J,CUI G,HU S,et al.Graph neural networks:a review of methods and applications[J].AI Open,2020,1:57-81. [76] 徐冰冰,岑科廷,黄俊杰,等.图卷积神经网络综述[J].计算机学报,2020,43(5):755-780. XU B B,CEN K T,HUANG J J,et al.A survey on graph convolutional neural network[J].Chinese Journal of Computers,2020,43(5):755-780. [77] XIE G S,LIU J,XIONG H,et al.Scale-aware graph neural network for few-shot semantic segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2021:5475-5484. [78] QI X,LIAO R,JIA J,et al.3D graph neural networks for RGBD semantic segmentation[C]//Proceedings of the IEEE International Conference on Computer Vision,2017:5199-5208. [79] ZHANG C,LIN G,LIU F,et al.Pyramid graph networks with connection attentions for region-based one-shot semantic segmentation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2019:9587-9595. [80] 贾熹滨,李佳.金字塔原型对齐的轻量级小样本语义分割网络[J].北京工业大学学报,2021,47(5):455-462. JIA X B,LI J.Lightweight pyramid prototype alignment network for few- shot semantic segmentation[J].Journal of Beijing University of Technology,2021,47(5):455-462. |
[1] | 解耀华, 章为川, 任劼, 景军锋. 基于自适应特征融合的小样本细粒度图像分类[J]. 计算机工程与应用, 2023, 59(3): 184-192. |
[2] | 韦世红, 刘红梅, 唐宏, 朱龙娇. 多级度量网络的小样本学习[J]. 计算机工程与应用, 2023, 59(2): 94-101. |
[3] | 张贺童, 姚康, 裴融浩, 丁上上, 付威威. 基于ADEU-Net分割网络的瞳孔精确分割方法[J]. 计算机工程与应用, 2023, 59(2): 212-221. |
[4] | 吴良武, 周永霞, 王宇航, 朱钰萍. 多注意力机制金字塔池化金手指划痕分割方法[J]. 计算机工程与应用, 2023, 59(1): 213-220. |
[5] | 田敏, 刘名果, 陈立家, 韩宗桓, 兰天翔, 梁倩. 面向样本扩充的新型风格迁移网络研究[J]. 计算机工程与应用, 2023, 59(1): 228-235. |
[6] | 张鑫, 姚庆安, 赵健, 金镇君, 冯云丛. 全卷积神经网络图像语义分割方法综述[J]. 计算机工程与应用, 2022, 58(8): 45-57. |
[7] | 熊风光, 张鑫, 韩燮, 况立群, 刘欢乐, 贾炅昊. 改进的遥感图像语义分割研究[J]. 计算机工程与应用, 2022, 58(8): 185-190. |
[8] | 王志勇, 邢凯, 邓洪武, 李亚鸣, 胡璇. 基于小样本学习和因果干预的ResNeXt对抗攻击[J]. 计算机工程与应用, 2022, 58(7): 68-76. |
[9] | 黄彦乾, 迟冬祥, 徐玲玲. 面向小样本学习的嵌入学习方法研究综述[J]. 计算机工程与应用, 2022, 58(3): 34-49. |
[10] | 张蕊, 孟晓曼, 曾志远, 金玮, 武益超. 图卷积神经网络在点云语义分割中的研究综述[J]. 计算机工程与应用, 2022, 58(24): 29-46. |
[11] | 朱亚梅, 施一萍, 江悦莹, 邓源, 刘瑾. 结合MASP和语义分割的双链路行人重识别方法[J]. 计算机工程与应用, 2022, 58(24): 143-150. |
[12] | 许栋, 杨关, 刘小明, 刘阳, 刘济宗, 陈静, 郭清宇. 基于自适应特征融合与转换的小样本图像分类[J]. 计算机工程与应用, 2022, 58(24): 223-232. |
[13] | 孙汉淇, 潘晨, 何灵敏, 胥智杰. 多模态特征融合的遥感图像语义分割网络[J]. 计算机工程与应用, 2022, 58(24): 256-264. |
[14] | 杨斌超, 续欣莹, 程兰, 冯洲. 道路环境下动态特征视觉里程计研究[J]. 计算机工程与应用, 2022, 58(23): 197-204. |
[15] | 丁一鹏, 赵璐. 遥感图像语义分割中的弱监督域自适应算法[J]. 计算机工程与应用, 2022, 58(22): 195-202. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||