计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (18): 162-171.DOI: 10.3778/j.issn.1002-8331.2201-0440
盛锦超,杜明晶,李宇蕊,孙嘉睿
SHENG Jinchao, DU Mingjing, LI Yurui, SUN Jiarui
摘要: 密度峰值聚类算法在处理分类型数据时难以产生较好的聚类效果。针对该现象,详细分析了其产生的原因:距离计算的重叠问题和密度计算的聚集问题。同时为了解决上述问题,提出了一种面向分类型数据的密度峰值聚类算法(Cauchy kernel-based density peaks clustering for categorical data,CDPCD)。算法首先指出分类型数据距离度量过程中有序特性(分类型数据属性值之间的顺序关系)鲜有考虑的现状,进而提出一种基于概率分布的加权有序距离度量来缓解重叠问题。通过结合柯西核函数,在共享最近邻密度峰值聚类算法基础上重新评估数据密度值,改进了密度计算和二次分配方式,增强了密度多样性,降低了聚集问题带来的影响。多个真实数据集上的实验结果表明,相较于传统的基于划分和密度的聚类算法,CDPCD都取得了更好的聚类结果。