计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (22): 125-130.DOI: 10.3778/j.issn.1002-8331.2007-0373
高见,孙懿,王润正,袁得嵛
GAO Jian, SUN Yi, WANG Runzheng, YUAN Deyu
摘要:
浏览器挖矿通过向网页内嵌入挖矿代码,使得用户访问该网站的同时,非法占用他人系统资源和网络资源开采货币,达到自己获益的挖矿攻击。通过对网页挖矿特征进行融合,选取八个特征用以恶意挖矿攻击检测,同时使用逻辑回归、支持向量机、决策树、随机森林四种算法进行模型训练,最终得到了平均识别率高达98.7%的检测模型。同时经实验得出随机森林算法模型在恶意挖矿检测中性能最高;有无Websocket连接、Web Worker的个数和Postmessage及onmessage事件总数这三个特征的组合对恶意挖矿检测具有高标识性。