计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (18): 186-193.DOI: 10.3778/j.issn.1002-8331.2011-0147
李铁飞,生龙,吴迪
LI Tiefei, SHENG Long, WU Di
摘要:
由于Bert-base,Chinese预训练模型参数巨大,在做分类任务微调时内部参数变化较小,易产生过拟合现象,泛化能力弱,且该模型是以字为单位进行的预训练,包含词信息量较少。针对这些问题,提出了BERT-TECNN模型,模型使用Bert-base,Chinese模型作为动态字向量模型,输出包含深度特征信息的字向量,Transformer encoder层再次对数据进行多头自注意力计算,提取特征信息,以提高模型的泛化能力,CNN层利用不同大小卷积核,捕捉每条数据中不同长度词的信息,最后应用softmax进行分类。该模型与Word2Vec+CNN、Word2Vec+BiLSTM、Elmo+CNN、BERT+CNN、BERT+BiLSTM、BERT+Transformer等深度学习文本分类模型在三种数据集上进行对比实验,得到的准确率、精确率、召回率、F1测度值均为最高。实验表明该模型有效地提取了文本中字词的特征信息,优化了过拟合问题,提高了泛化能力。