计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (17): 116-121.DOI: 10.3778/j.issn.1002-8331.2008-0148
刘莉
LIU Li
摘要:
传统推荐算法主要关注推荐准确性,而用户对项目的不同偏好和多样性需求也影响着用户体验和满意度。针对该问题,提出了一种新的算法,在计算项目相似度时结合了用户对不同项目的评分差异,以此可以提高项目相似度计算的准确性,根据用户历史评分数据和项目类别数据得到用户-类别权重矩阵,一方面以此计算基于熵的多样性,另外根据用户对项目的兴趣计算公式,生成一个降序排列的初始推荐序列,根据用户偏好误差门限,并结合用户-类别权重矩阵实现基于用户偏好的推荐,最终生成[N]个推荐的项目,同时保证准确率和多样性的前提下,提高用户满意度。在数据集movielens的多个版本上,与多个经典算法比较,实验结果表明,提出的算法可以有效提高推荐精度和用户满意度。