计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (13): 77-84.DOI: 10.3778/j.issn.1002-8331.2010-0223
孙明,陈昕
SUN Ming, CHEN Xin
摘要:
为满足实际应用对卷积神经网络(CNN)推理的低时延、小体积和高吞吐率等要求,设计了一个采用如下优化方法的加速器:针对外存访问带宽限制,基于设计空间探索确定循环分块因子以最大化数据重用;针对CNN计算密度高,采用循环展开技术充分挖掘四种计算并行度;内存池、乒乓缓存和动态数据量化等技术用于管理片内外存储资源。将生成加速器流程封装为CNN加速框架;采用生成的加速器实现了AlexNet网络,仿真结果表明,该设计最高可达1?493.4?Gops的计算峰值,是被比较工作的多达24.2倍,DSP效率也超过了其他设计方法,最低为1.2倍,实现了CNN快速部署,开发效率高,加速性能优异。