计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (13): 102-107.DOI: 10.3778/j.issn.1002-8331.2006-0021
蔡瑞光,张德生,张晓
CAI Ruiguang, ZHANG Desheng, ZHANG Xiao
摘要:
针对伪近邻分类算法(LMPNN)对异常点和噪声点仍然敏感的问题,提出了一种基于双向选择的伪近邻算法(BS-PNN)。利用邻近性度量选取[k]个最近邻,让测试样本和近邻样本通过互近邻定义进行双向选择;通过计算每类中互近邻的个数及其局部均值的加权距离,从而得到测试样本到伪近邻的欧氏距离;利用改进的类可信度作为投票度量方式,对测试样本进行分类。BS-PNN算法在处理复杂的分类任务时,具有能够准确识别噪声点,降低近邻个数[k]的敏感性,提高分类精度等优势。在UCI和KEEL的15个实际数据集上进行仿真实验,并与KNN、WKNN、LMKNN、PNN、LMPNN、DNN算法以及P-KNN算法进行比较,实验结果表明,基于双向选择的伪近邻算法的分类性能明显优于其他几种近邻分类算法。