计算机工程与应用 ›› 2020, Vol. 56 ›› Issue (9): 41-47.DOI: 10.3778/j.issn.1002-8331.1904-0247
魏锋涛,史云鹏,石坤
WEI Fengtao, SHI Yunpeng, SHI Kun
摘要:
针对回溯搜索优化算法收敛速度慢和易陷入局部最优的缺陷,提出了一种基于组合变异策略的改进回溯搜索优化算法。为了提高历史种群的多样性并扩大算法的搜索空间,在算法迭代过程中采用柯西种群生成策略,利用柯西分布尺度系数生成历史种群;引入基于混沌映射和伽玛分布的组合变异策略,在一定概率下对较差个体进行变异生成质量较好的个体;对新种群中越界个体采用越界处理策略,确保算法在预定的搜索空间内搜索。选取了11个标准测试函数,在低维和高维状态下进行数值仿真,并与3种表现良好的算法进行比较,结果表明该改进算法在收敛速度和收敛精度上有很大优势。