计算机工程与应用 ›› 2019, Vol. 55 ›› Issue (5): 105-111.DOI: 10.3778/j.issn.1002-8331.1803-0419
白 创,陈 翔
BAI Chuang, CHEN Xiang
摘要: 针对已有的卷积神经网络(Convolutional Neural Network,CNN)在人脸识别训练中出现过拟合、收敛速度慢以及识别准确率不高的问题,提出了新型的LeNet-FC卷积神经网络模型。通过增加网络层、缩小卷积核等结构改进以及采用优化的对数—修正线性单元(Logarithmic Rectified Linear Unit,L_ReLU)激活函数,该模型在人脸识别训练的准确率达到了99.85%。同时基于LeNet-FC卷积神经网络模型设计了一个人脸识别系统。该系统在ORL人脸库的仿真测试实验中识别准确率达到了96%。