计算机工程与应用 ›› 2020, Vol. 56 ›› Issue (20): 28-35.DOI: 10.3778/j.issn.1002-8331.2004-0043
邓天民,周臻浩,方芳,王琳
DENG Tianmin, ZHOU Zhenhao, FANG Fang, WANG Lin
摘要:
针对我国自动驾驶的辅助识别交通标志误差率大、检测速度慢、需人工参与等问题,提出一种基于改进YOLOv3的交通标志检测识别方法。通过改进Darknet53网络结构来减少网络迭代过程中前向推理计算,提升网络迭代速度。引入目标检测的直接评价指标GIoU指导定位任务来提高检测精度。使用[k]-means++聚类算法获取anchor尺寸并匹配到对应的特征层。实验结果表明,提出的方法相较于原始YOLOv3在标准数据集Lisa上的平均精度提升了8%,检测速度达到了76.9 f/s;在自制数据集CQ-data上平均精度可达94.8%,与传统识别以及其他算法相比,不仅具有更好的实时性、准确性,对各种环境变化具有更好的鲁棒性,而且可以识别多种交通标志的类型。