计算机工程与应用 ›› 2020, Vol. 56 ›› Issue (19): 205-215.DOI: 10.3778/j.issn.1002-8331.1909-0119
张广翩,计忠平
ZHANG Guangpian, JI Zhongping
摘要:
近年来基于二维图像的三维建模方法取得了快速发展,但就人体建模而言,由于摄像头采集到的二维人体图像包含衣物、发丝等大量的纹理信息,而像虚拟试衣等相关应用需要将人体表面的衣物褶皱等纹理信息去除,同时考虑到裸体数据采集侵犯了用户的隐私,因此提出一种基于二维点云图像到三维人体模型的新型建模方法。与摄像机等辅助设备进行二维图片数据集的采集不同,该算法的输入是由三维人体点云模型以顶点模式绘制的二维点云渲染图。主要工作是建立一个由二维点云图和相应的人体黑白二值图构成的数据集,并训练一个由前者生成后者的生成对抗网络模型。该模型将二维点云图转化为相应的黑白二值图。将该二值图输入一个训练好的卷积神经网络,用于评估二维图像到三维人体模型构建的效果。考虑到由不完整三维点云数据重建完整的三维人体网格模型是一个具有挑战性的问题,因此通过模拟二维点云的破损和残缺状态,使得算法能够处理不完整的二维点云图。大量的实验结果表明,该方法重建出的三维人体模型能够有效实现视觉上的真实感,为了对重建后的精度进行定量的分析,选取了人体特征中具有代表性的腰围特征作为误差评估;为了增加三维人体模型库中人体形态的多样性,还引入一种便捷的三维人体模型数据增强技术。实验结果表明,该算法只需要输入一张二维点云图像,就能快速创建出相应的数字化人体模型。