计算机工程与应用 ›› 2019, Vol. 55 ›› Issue (6): 237-243.DOI: 10.3778/j.issn.1002-8331.1712-0019

• 工程与应用 • 上一篇    下一篇

城市出租车乘客出行特征可视化分析方法

牛丹丹1,段宗涛1,2,陈  柘1,2,康  军1,2,朱依水1,2,唐  蕾1,2,葛建东3,江  华3   

  1. 1.长安大学 信息工程学院,西安 710064
    2.陕西省道路交通智能检测与装备工程技术研究中心,西安 710064
    3.思建科技有限公司,重庆 400015
  • 出版日期:2019-03-15 发布日期:2019-03-14

Visualization Analysis Method of Urban Taxi Passenger Travel Characteristics

NIU Dandan1, DUAN Zongtao1,2, CHEN Zhe1,2, KANG Jun1,2, ZHU Yishui1,2, TANG Lei1,2, GE Jiandong3, JIANG Hua3   

  1. 1.School of Information Engineering, Chang’an University, Xi’an 710064, China
    2.Shaanxi Road and Traffic Intelligent Detection and Equipment Engineering Technical Research Center, Xi’an 710064, China
    3.Sijian Technologies Co.Ltd., Chongqing 400015, China
  • Online:2019-03-15 Published:2019-03-14

摘要: 可视化技术通过图形表现数据的内在规律,并可利用交互的形式实现数据的层次化展示,其在分析交通数据、发现交通问题以及辅助决策中扮演着越来越重要的角色。为了更加清晰、直观地展示城市出租车GPS轨迹数据传递的信息,解决因其数据量庞大和时空信息复杂而带来的分析难题,提出一种集成聚集可视化、特征可视化对出租车GPS轨迹数据进行可视化分析的方法。首先,通过数据处理得到可用于可视化的特征数据,而后对乘客上下车点进行聚集可视化,并利用多视图协同交互的方法对轨迹数据进行了特征可视化;最后,根据可视化结果对城市出租车乘客出行特征时空分布情况进行了分析。在此基础上,设计了一个交互式可视分析系统,并通过真实数据集案例验证了系统的有效性。

关键词: 出租车GPS轨迹数据, 出租车乘客出行特征, 可视化分析, 多视图协同交互

Abstract: Visual analysis technology plays an increasingly important role in the analysis of traffic data, discovery of traffic problems and auxiliary decision-making through graphical and interactive forms of data. In order to show the information obtained from the GPS trajectory data clearly and intuitively, this paper presents an integrated clustering visualization and feature visualization method for the taxi GPS trajectory, aiming to solve the hard problem arising from the large data volume and complex spatial-temporal information. Firstly, the feature data used for visualization is extracted by data processing, then the visualization of the passenger pick-up point is carried out, and the trajectory data is visualized by the method of multi-view collaborative interaction. Finally, according to the visualization results, temporal and spatial distribution of the travel characteristics are analyzed. On this basis, an interactive visual analysis system is designed and the validity of the system is proved through case studies of real data sets.

Key words: taxi GPS trajectory data, taxi passenger travel characteristics, visualization analysis, multi-view collaborative interaction