计算机工程与应用 ›› 2019, Vol. 55 ›› Issue (23): 40-44.DOI: 10.3778/j.issn.1002-8331.1811-0185
陈紫扬,张月霞
CHEN Ziyang, ZHANG Yuexia
摘要: 研究复杂网络的链路预测算法对分析舆论传播方向、预测舆论演进趋势和控制舆论发展进程具有重要意义。针对现有的基于节点度的链路预测算法存在预测质量偏低的问题,提出了一种结合二层节点度和聚类系数的链路预测算法。算法全面考虑网络局部结构信息以及共同邻居节点之间的差异性,在相似性评价指标的选择上将节点度和聚类系数结合,深度挖掘节点相似性性质并将节点度扩展到二层。最后在三个真实数据集中分别进行仿真实验,结果表明提出的算法相比于Common Neighbors、Adamic-Adar和Resource Allocation等经典算法具有更好的性能。