计算机工程与应用 ›› 2019, Vol. 55 ›› Issue (20): 114-121.DOI: 10.3778/j.issn.1002-8331.1807-0043
吴航,江红
WU Hang, JIANG Hong
摘要: 推荐系统在处理信息过载的问题上有着显著的作用,但是推荐系统也存在不足之处,在于它的数据稀疏性和冷启动问题,使用传统的协同过滤算法已经不能满足于推荐系统的技术发展。随着社交网络的发展,朋友信任关系被广泛地运用于推荐系统中。但是在实际生活中,社交网络中的信任关系也存在着数据稀疏的问题,为了更好地提高推荐的质量,提出了一种融合潜在社交信任模型的协同过滤推荐算法。新的社交信任模型主要由以下部分组成:社交矩阵中全局信任值和专家模型,改进的信任传播模型,改进的皮尔逊系数模型。通过实验结果分析可知融合新模型的推荐算法有助于提升推荐效果。