计算机工程与应用 ›› 2018, Vol. 54 ›› Issue (17): 116-121.DOI: 10.3778/j.issn.1002-8331.1803-0027
孙 颖,马江河,张雪英
SUN Ying, MA Jianghe, ZHANG Xueying
摘要: 针对现有表征情感信息的脑电信号的非线性特征提取不完善的问题,将相空间重构技术引入情感脑电的识别中,提取了在相空间重构下基于轨迹的描述轮廓的三种非线性几何特征作为新的情感脑电特征。结合脑电信号的功率谱熵以及非线性属性特征(近似熵、最大Lyapunov指数、Hurst指数),提出了基于主成分分析(PCA)的非线性全局特征(非线性几何特征+非线性属性特征)和功率谱熵的融合算法,以支持向量机(SVM)为分类器进行情感识别。结果显示,非线性全局特征能更有效地实现情感识别,二分类情感识别率约90%左右。基于PCA的融合情感特征相比单一特征能达到更佳的情感识别性能,四分类实验中平均识别率可达86.42%。结果表明,非线性全局特征相比非线性属性特征情感识别率有所提高,非线性全局特征以及功率谱熵的结合可以构造出更佳的情感脑电特征参数。