计算机工程与应用 ›› 2018, Vol. 54 ›› Issue (13): 142-147.DOI: 10.3778/j.issn.1002-8331.1702-0289
陈睿敏1,2,孙胜利1,廖星星1
CHEN Ruimin1,2, SUN Shengli1, LIAO Xingxing1
摘要: 为了提高实际复杂场景的人机交互中动态手势识别的准确性和实时性,提出了一种时序局部敏感直方图(Temporal Locality Sensitive Histograms of Oriented Gradients,TLSHOG)特征新方法,用于描述手势运动的时序变化和空间姿态,实现了快速而精确的动态手势识别。采用普通网络摄像头获取手部的二维图像序列作为训练样本,然后构造单帧图像特征描述手部的空间姿态,并结合时间金字塔(Temporal Pyramid,TP)来描述手势运动轨迹的时空特征,运用多维支持向量机(Support Vector Machine,SVM)算法进行模型训练,对测试样本中的多种手势进行精确的分类。实验结果表明,该方法准确度高,实时性好,对于复杂背景干扰、光照强度变化有较强的鲁棒性。