计算机工程与应用 ›› 2017, Vol. 53 ›› Issue (3): 183-187.DOI: 10.3778/j.issn.1002-8331.1607-0210
赵鹏飞,周绍光,裔 阳,胡屹群
ZHAO Pengfei, ZHOU Shaoguang, YI Yang, HU Yiqun
摘要: 在主动学习的基础上,提出一种基于SLIC的高光谱遥感图像主动分类方法。首先提取图像纹理特征并与光谱特征融合,使用PCA对新数据进行降维,取前三个主成分构成假彩色图像,然后使用SLIC处理该图像获得超像素;接着随机抽取定量超像素作为初始训练样本,样本光谱信息为超像素样本中所有像素点的光谱信息均值,样本标签为超像素中出现次数最多的类别;然后通过主动学习得到SVM分类器;最后使用分类器对超像素分类得到其类别,并将超像素类别赋予其包含的像素点,从而达到高光谱遥感图像分类的目的。实验表明:该方法明显降低了主动学习过程的时间消耗,有效地提高了分类效果,其OA,AA和Kappa值显著优于未使用SLIC的主动学习方法。