计算机工程与应用 ›› 2017, Vol. 53 ›› Issue (19): 152-156.DOI: 10.3778/j.issn.1002-8331.1607-0182
颜学龙,丁 鹏,马 峻
YAN Xuelong, DING Peng, MA Jun
摘要: 提出了一种新的方法来进行模拟电路故障诊断。该方法包括Haar的小波分解,对数据的归一化处理,以及用狼群算法优化RBF神经网络。用Haar小波对所得的电路原始故障数据集进行变换,然后对变换后的数据进行归一化处理,最终得出RBF神经网络训练所需的输入数据。针对RBF神经网络中隐层节点中心、基函数宽度及权值选取困难问题,使用狼群算法来优化训练RBF神经网络,以提高网络训练稳定性与诊断成功率。通过两个电路的诊断实例,来论述这些方法的具体实现过程,验证用该方法进行模拟电路故障诊断的可行性。