计算机工程与应用 ›› 2017, Vol. 53 ›› Issue (19): 147-151.DOI: 10.3778/j.issn.1002-8331.1604-0170
李 浩1,2,连 捷3,张 俊3
LI Hao1,2, LIAN Jie3, ZHANG Jun3
摘要: 为了快速定位监控场景中不同姿态的车辆位置,结合车辆外形特征、目标候选区域和级联Boosting分类器进行多角度车辆检测。对不同角度和纵横比的车辆进行聚类,然后对每种姿态的车辆提取候选区域的累积通道特征(ACF),使用AdaBoost学习分类器用于车辆检测,此外,检测时用边缘框计算可能存在物体的区域代替滑动窗法进行提速。以含有较难、中等、较易3种难度水平超过3?500个样本为测试集进行了快速车辆检测测试,并与ACF、DPM、NPD和HOG-Haar等4种方法进行了对比,实验结果表明基于候选区域的车辆检测方法性能最优,在3种测试集上平均达到了85%以上的检测率。