计算机工程与应用 ›› 2016, Vol. 52 ›› Issue (22): 164-168.
孙 桃1,谢振平1,梅向东2,李宁东2
SUN Tao1, XIE Zhenping1, MEI Xiangdong2, LI Ningdong2
摘要: 动画视频分析中,实时在线地检测场景切换点是一个基础任务。传统基于像素和阈值的检测方法,不仅需要存储整个动画视频,同时检测结果受目标运动和噪声的影响较大,且阈值设定也不太适用复杂的场景变换。提出一种基于在线Bayesian决策的动画场景切换检测方法,新方法首先对动画帧图像分块并提取其HSV颜色特征,然后将连续帧的相似度存入一个固定长度的缓存队列中,最后基于动态Bayesian决策判定是否有场景切换。多类动画视频的对比实验结果表明,新方法能够在线且更稳健地检测出动画场景切换。