计算机工程与应用 ›› 2016, Vol. 52 ›› Issue (2): 74-80.
陈少淼1,李智勇1,杨 波1,2,李彦武3
CHEN Shaomiao1, LI Zhiyong1, YANG Bo1,2, LI Yanwu3
摘要: 能耗感知调度的研究对云计算数据中心的可持续发展有着重要意义。能耗感知调度是一个NP难的多目标优化问题,目前云环境下的任务调度算法较少考虑能耗问题,且不能实现对能耗的灵活管理,随机搜索算法是一种解决该问题的有效途径,但其计算开销大,收敛速度慢。将异构云环境下的能耗感知调度问题定义为一个带约束的问题,即在一定的完成时间下优化系统能耗,以实现对能耗的灵活管理。此外,提出了基于在线学习的超启发式算法(OLHH),该算法结合电压调节技术,在设计了简单高效的启发式策略集的基础上,引进超启发式算法,并采用在线学习的方式跟踪启发式策略的表现,实现对启发式策略的合理管理,从而达到提高算法的收敛性能的目的。模拟实验表明,该算法能够实现系统能耗的灵活管理,且比传统的随机搜索算法有着更好的收敛性能。