计算机工程与应用 ›› 2016, Vol. 52 ›› Issue (17): 16-23.
张国印1,曲家兴1,2,李晓光1
ZHANG Guoyin1, QU Jiaxing1,2, LI Xiaoguang1
摘要: Android操作系统是市场占有率最高的移动操作系统,基于Android平台的恶意软件也呈现爆发式的增长,而目前仍然没有有效的手段进行Android恶意行为的检测,通过分析Android恶意行为的特点,采用基于贝叶斯网络的机器学习算法进行Android恶意行为的检测,通过静态分析的方法进行Android文件静态特征的提取,将Android恶意应用的静态分析与贝叶斯网络相结合,最后通过使用提出的方法构建贝叶斯网络模型,通过实验验证了提出的Android恶意行为检测模型的有效性。