计算机工程与应用 ›› 2016, Vol. 52 ›› Issue (10): 151-156.

• 模式识别与人工智能 • 上一篇    下一篇

基于无参数二维判别局部保持投影算法的人脸识别

龚  劬,王  珂,冉清华,谷雅宁   

  1. 重庆大学 数学与统计学院,重庆 401331
  • 出版日期:2016-05-15 发布日期:2016-05-16

Parameter-less two-dimensional discriminant locality preserving projections and face recognition

GONG Qu, WANG Ke, RAN Qinghua, GU Yaning   

  1. College of Mathematics and Statistics, Chongqing University, Chongqing 401331, China
  • Online:2016-05-15 Published:2016-05-16

摘要: 通过向二维局部保持投影(2D-LPP)算法中引入类间约束和类标识信息,得到二维判别局部保持投影(2D-DLPP)算法,使它拥有更多的判别信息。但它却面临复杂的参数选择问题,这使得它在解决识别问题时受到限制。为解决此问题,构造无参数的相似矩阵,提出无参数的二维判别局部投影(无参数2D-DLPP)算法。在Yale和ORL人脸库上的仿真实验结果表明,该算法与二维判别局部保持投影(2D-DLPP)、二维局部保持投影法(2D-LPP)和二维线性判别分析法(2D-LDA)相比能够取得更高的识别率。

关键词: 人脸识别, 特征提取, 二维判别局部保持投影, 无参数

Abstract: By introducing between-class scatter constraint and label information into two-dimensional locality preserving projections(2D-LPP) algorithm, two-Dimensional Discriminant Locality Preserving Projections(2D-DLPP) has more discriminant power than 2D-LPP. However, 2D-DLPP is confronted with the difficulty of parameter selection, which limits its power on solving recognition problem. To solve this problem, by constructing parameter-less affinity matrix, an algorithm called parameter-less two-dimensional discriminant locality preserving projections(parameter-less 2D-DLPP) is proposed. The simulation results on Yale and ORL face database show that the method in this paper can get higher recognition rate than 2D-DLPP, 2D-LPP and 2D-LDA.

Key words: face recognition, feature extraction, two-dimensional locality preserving projections, parameter-less