计算机工程与应用 ›› 2016, Vol. 52 ›› Issue (1): 219-223.
何双双,熊 兵,张建明,吴宏林
HE Shuangshuang, XIONG Bing, ZHANG Jianming, WU Honglin
摘要: 针对现有的基于稀疏表示的人脸识别方法没有更新优化选择的原子的问题,提出一种基于子空间追踪的人脸识别方法。在稀疏编码过程中的原子选择步骤中,引入回溯迭代优化思想和多原子选择方案,通过移除可信度较低的原子来更新优化候选支撑向量中选择的原子,使选择的原子与待识别人脸图像具有最相似的结构,从而在该原子上的稀疏编码系数具有较好的人脸重构能力。实验证明,与基于正交匹配追踪(OMP)算法和基于OMP-cholesky算法的人脸识别相比,该算法在ORL和Yale B人脸数据库上的算法复杂度较低且识别率均提高了约5%。