计算机工程与应用 ›› 2015, Vol. 51 ›› Issue (7): 165-168.

• 图形图像处理 • 上一篇    下一篇

基于深度信息的指尖追踪及手势识别

顾  德,李  吉   

  1. 江南大学 轻工过程先进控制教育部重点实验室,江苏 无锡 214062
  • 出版日期:2015-04-01 发布日期:2015-03-31

Hand and finger tracking based on Kinect depth information

GU De, LI Ji   

  1. Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214062, China
  • Online:2015-04-01 Published:2015-03-31

摘要: 提出了一个基于深度信息对手指和手部进行实时跟踪,并可用于手势识别的方案。用Kinect获取深度信息,然后生成手部的三维点云,进行过滤转换成像素矩阵;使用K-curvature算法获取指尖和手掌方位,然后通过手指之间的相关距离进行手指标定。实验结果证明该方案识别追踪效果稳定且高效,不受光照和复杂背景影响,能够同时跟踪双手共10个手指和2个掌心的动作轨迹,并用于手势识别。

关键词: 深度信息, 指尖检测, 手势识别, 人机交互

Abstract: This paper presents an algorithm to realize the finger and palm tracking based on the depth information in real time. The recognized actions can be used for hand pose recognition. The depth map of the hands is captured by Kinect, which then converts the depth map to 3D point cloud in a form of pixel matrix. Fingers and direction of palms are calculated by using K-curvature algorithm. Finger names are determined according to their relative distances. Experimental results show that the present method effectively achieves the finger and palm tracking, and is unaffected by light and complex background. This method can apply to hand pose recognition.

Key words: depth data, fingertip detection, gesture recognition, Human-Machine Interaction(HCI)