计算机工程与应用 ›› 2015, Vol. 51 ›› Issue (21): 199-204.

• 图形图像处理 • 上一篇    下一篇

2DPCA+2DLDA和改进的LPP相结合的人脸识别算法

李球球,杨恢先,奉俊鹏,蔡勇勇,翟云龙   

  1. 湘潭大学 材料与光电物理学院,湖南 湘潭 411105
  • 出版日期:2015-11-01 发布日期:2015-11-16

Face recognition algorithm based on 2DPCA+2DLDA and improved LPP

LI Qiuqiu, YANG Huixian, FENG Junpeng, CAI Yongyong, ZHAI Yunlong   

  1. Faculty of Material and Photoelectronic Physics, Xiangtan University, Xiangtan, Hunan 411105, China
  • Online:2015-11-01 Published:2015-11-16

摘要: 针对局部保持投影(LPP)算法无监督且只保留局部信息的特性,提出一种2DPCA+2DLDA和改进的LPP相结合的人脸识别算法。将训练集样本用2DPCA+2DLDA算法进行投影,保留数据整体空间信息和分类信息;引入类内、类间信息对LPP算法的关系矩阵进行优化,使LPP成为有监督的非线性学习方法,采用改进的LPP(ILPP)算法对训练集图像进行二次投影,提取样本的局部流形信息,并作为人脸识别信息进行鉴别。在Yale和ORL人脸库的测试结果验证了该方法的有效性。

关键词: 人脸识别, 二维主成分分析+二维线性判别分析(2DPCA+2DLDA), 局部保持投影(LPP), 改进的局部保持投影(ILPP), 局部流形信息

Abstract: Aiming at the unsupervised learning problem of Locality Preserving Projection(LPP), which is only contained the local information, a new face recognition algorithm based on 2DPCA+2DLDA and improved LPP is presented. Each image in the training set is mapped by 2DPCA+2DLDA to retain the spatial information and class label information. Then, the weight matrix of LPP is optimized with the within-class and between-class label information, which makes the LPP become a supervised nonlinear learning method. Local manifolds information of training set is obtained by improved LPP(ILPP) algorithm. The experimental results on the Yale and ORL face databases validate the effectiveness of the proposed algorithm.

Key words: face recognition, Two-Dimensional Principal Component Analysis+Two-Dimensional Linear Discriminant Analysis(2DPCA+2DLDA), Locality Preserving Projection(LPP), Improved Locality Preserving Projection(ILPP), local manifolds information