计算机工程与应用 ›› 2015, Vol. 51 ›› Issue (17): 238-244.

• 工程与应用 • 上一篇    下一篇

不确定贝叶斯算法在滑坡危险性预测的应用

胡  健1,刘大雷2,彭  喆2   

  1. 1.江西理工大学 应用科学学院,江西 赣州 341000
    2.江西理工大学 信息工程学院,江西 赣州 341000
  • 出版日期:2015-09-01 发布日期:2015-09-14

Application of uncertain Bayes algorithm in prediction of landslide hazard

HU Jian1, LIU Dalei2, PENG Zhe2   

  1. 1.College of Applied Science, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 341000, China
    2.College of Information Engineering, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 341000, China
  • Online:2015-09-01 Published:2015-09-14

摘要: 为了解决传统的贝叶斯分类技术在构建滑坡危险性分类和预测的模型的过程中难以有效地获取预测模型所需的参数及滑坡诱发因素定量刻画技术难题等问题,引入不确定贝叶斯算法,将不确定数据的可能世界模型与朴素贝叶斯分类模型结合起来,构建了不确定贝叶斯分类模型,从而有效刻画降雨量这一属性级不确定的属性,达到提高滑坡危险性预测精度的目的。通过实例验证了运用该方法进行滑坡危险评价的可行性和高效性。

关键词: 不确定贝叶斯模型, 滑坡, 危险性评价, 数据预处理

Abstract: The traditional Bayesian classification technology can’t obtain the effective parameters which the prediction model needs during constructing the classification model. And the method to describe the inducing factors generating a landslide quantificationally is difficult. Therefore, the uncertain Bayes algorithm is introduced. The uncertain Bayes classification model is constructed by combining the uncertain world model with the naive Bayes classification model. Finally, the goal to effectively describe the character of the rainfall which is an uncertain attribute and improve the accuracy of the landslide hazard prediction is achieved. Experiment over a realistic dataset reveals that the approaches improve the landslide risk evaluation significantly.

Key words: uncertain Bayes model, landslide, hazard assessment, data preprocessing