计算机工程与应用 ›› 2015, Vol. 51 ›› Issue (17): 188-193.

• 图形图像处理 • 上一篇    下一篇

基于局部模型匹配的目标轮廓跟踪

刘万军,刘大千,费博雯   

  1. 辽宁工程技术大学 软件学院,辽宁 葫芦岛 125105
  • 出版日期:2015-09-01 发布日期:2015-09-14

Object contour tracking based on locally model matching

LIU Wanjun, LIU Daqian, FEI Bowen   

  1. School of Software, Liaoning Technical University, Huludao, Liaoning 125105, China
  • Online:2015-09-01 Published:2015-09-14

摘要: 在复杂背景下,传统轮廓跟踪方法会发生漂移,甚至丢失目标。针对上述问题,提出一种基于局部模型匹配(LMM)的目标轮廓跟踪算法。利用超像素技术结合EMD相似性度量构建局部特征模型,从而进行局部模型匹配。结合粒子滤波的Snake模型作提取目标轮廓,实现目标轮廓精确跟踪。实验结果表明,该算法在目标形变、部分遮挡、复杂背景等条件下均具有较高的跟踪成功率。与多种目标轮廓跟踪算法进行对比,该算法具有较高的准确性和鲁棒性。

关键词: 局部模型, 超像素, 推土机距离(EMD)相似性度量, Snake模型

Abstract: The traditional tracking methods make moving target easily drift, even result into the loss of the moving target under the complex background. Focusing on these problems, it proposes a object contour tracking algorithm based on Locally Model Matching (LMM). It uses super-pixel combining with the EMD similarity measure to build locally features model. It carries on locally model matching. The Snake model combines particle filter which extracts the target contour to achieve contour tracking accurately. The experimental results indicate that the proposed moving target tracking method maintaines a higher success rate that is under the conditions of the target deformation, partial occlusion and complex background. Compared with other moving target contour tracking methods, the proposed algorithm possesses accurateness and robustness.

Key words: locally model, super-pixel, Earth Mover’s Distance(EMD) similarity measure, Snake model