计算机工程与应用 ›› 2015, Vol. 51 ›› Issue (10): 123-127.
冷泳林1,2,张清辰2,鲁富宇1
LENG Yonglin1,2, ZHANG Qingchen2, LU Fuyu1
摘要: 不完整数据的分析与填充一直是大数据处理的热点研究课题,传统的分析方法无法对不完整数据直接聚类,大部分方法先填充缺失值,然后对数据聚类。这些方法一般利用整个数据集对缺失数据进行填充,使得填充值容易受到噪声的干扰,导致填充结果不精确,进而造成聚类精度很低。提出一种不完整数据聚类算法,对不完全信息系统的相似度公式进行重新定义,给出不完整数据对象间的相似度度量方式,进而直接对不完整数据聚类。根据聚类结果将同一类对象划分到相同的簇中,通过同一类对象的属性值对缺失值进行填充,避免噪声对填充值的干扰,提高填充结果的精确性。实验结果表明,提出的方法能够对不完整数据进行聚类,并有效提高缺失数据的填充精度。