计算机工程与应用 ›› 2020, Vol. 56 ›› Issue (13): 47-53.DOI: 10.3778/j.issn.1002-8331.1905-0171
贾露,张德生,吕端端
JIA Lu, ZHANG Desheng, LV Duanduan
摘要:
针对密度峰值聚类算法(DPC)在计算样本的局部密度时随机选取截断距离、分配剩余样本点错误率高等问题,提出了一种物理学改进的密度峰值聚类算法W-DPC。通过万有引力定律定义样本的局部密度;基于第一宇宙速度建立了两步策略对剩余样本点进行分配,即必须属于点的分配和可能属于点的分配,使剩余样本点的分配更加精确。利用人工合成数据集与UCI上的真实数据集对W-DPC算法进行测试,并与KNN-DPC算法、DPC算法、DBSCAN算法、AP算法以及K-Means算法进行比较,数值实验表明:W-DPC算法的聚类效果明显优于其他算法。