计算机工程与应用 ›› 2014, Vol. 50 ›› Issue (8): 99-102.

• 数据库、数据挖掘、机器学习 • 上一篇    下一篇

双正则化参数的L2-SVM参数选择

姚程宽1,许建华2   

  1. 1.安庆医药高等专科学校 公共基础部,安徽 安庆 246003
    2.南京师范大学 计算机学院,南京 210024
  • 出版日期:2014-04-15 发布日期:2014-05-30

Parameter optimization of L2-SVM with two regularization parameters

YAO Chengkuan1, XU Jianhua2   

  1. 1.Department of Common Basic, Anqing Medical and Pharamaceutical College, Anqing, Anhui 246003, China
    2.School of Computer Science, Nanjing Normal University, Nanjing 210024, China
  • Online:2014-04-15 Published:2014-05-30

摘要: 摘  要:寻找支持向量机(SVM)的最优参数是支持向量机研究领域的热点之一。2范数软间隔SVM(L2-SVM)将样本转化成线性可分,在原始单正则化参数L2-SVM的基础上,提出双正则化参数的L2-SVM,获得它的对偶形式,从而确定了最优化的目标函数。然后结合梯度法,提出了一种新的支持向量机参数选择的新方法(Doupenalty-Gradient)。实验使用了10个基准数据集,结果表明,Doupenalty-Gradient方法是可行且有效的。对于实验所用的样本,极大地改善了分类精度。

关键词: 统计学习理论, 支持向量机, VC维, 参数选择

Abstract: Searching the optimal parameters is one of the most important area of SVM and often named as parameter optimization or parameter selection. The L2-SVM can convert the samples into linearly separable problem. Based on the performance, this paper proposes the L2-SVM with two regularization parameters, and the dual formulation of L2-SVM with two regularization  parameters is deduced. Combining the objective function established on minimizing the VC dimension and the gradient method, a new algorithm called Doupenalty-Gradient is present. Ten benchmark datasets are used in the experiments, and the classifying accuracy is improved obviously. The experimental results show the wonderful property and the feasibility of Doupenalty-Gradient.

Key words: statistical learning theory, support vector machines, VC dimension, parameter selection