计算机工程与应用 ›› 2014, Vol. 50 ›› Issue (8): 154-157.

• 图形图像处理 • 上一篇    下一篇

广义特征值多类分类算法

阳红英,杨志霞   

  1. 新疆大学 数学与系统科学学院,乌鲁木齐 830046
  • 出版日期:2014-04-15 发布日期:2014-05-30

Generalized eigenvalue multi-class classification algorithm

YANG Hongying, YANG Zhixia   

  1. College of Mathmatics and System Sciences, Xinjiang University, Urumqi 830046, China
  • Online:2014-04-15 Published:2014-05-30

摘要: 提出了一个新的多类分类算法,该算法的目标是寻找[M]个相互不平行的超平面,使得第[m(m=1,2,?,M)]类的各点到第[m]个超平面的距离之和尽可能小,而其余类的所有点到该超平面的距离之和尽可能大。基于这个思想,寻求第[m]个超平面的优化模型最终可转化为一个广义特征值问题。该方法编程简单,易于实现。在数值试验部分,该算法与一些经典的基于支持向量机的多类分类算法进行比较,表明了该算法的优越性。

关键词: 多类分类问题, 广义特征值, 支持向量机

Abstract: In this paper, it proposes a new multi-class classification algorithm. The task is to find [M] non-parallel hyperplanes. The [m-th(m=1,2,?,M)] hyperplane is constructed such that the inputs of the [m-th] class are close to the hyperplane and the rest inputs are far away from it as far as possible. Based on this idea, for finding the [m-th] hyperplane, the optimization model can be transformed into a generalized eigenvalue problem. The method is easily implemented by a single Matlab command that solves the classical generalized eigenvalue problem. The preliminary numerical experiments show that the method is competitive with several classical multi-class classification algorithms based on support vector machine.

Key words: multi-class classification problem, generalized eigenvalue, support vector machine