计算机工程与应用 ›› 2014, Vol. 50 ›› Issue (5): 165-168.

• 图形图像处理 • 上一篇    下一篇

基于改进层次聚类和SVM的图像型火焰识别

贾  阳,王慧琴,胡  燕,党  勃   

  1. 西安建筑科技大学 信息与控制工程学院,西安 710055
  • 出版日期:2014-03-01 发布日期:2015-05-12

Flame detection algorithm based on improved hierarchical cluster and support vector machines

JIA Yang, WANG Huiqin, HU Yan, DANG Bo   

  1. School of Information and Control Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
  • Online:2014-03-01 Published:2015-05-12

摘要: 为了提高大空间建筑内实时监控的火灾检出率,提出基于改进分层聚类和支持向量机(SVM)的火灾识别算法。首先建立火焰颜色模型,用像素运动累积法获取疑似目标,借助改进层次聚类法对其进行合并,形成少量疑似区域。然后提取疑似区域相邻帧间相关性、面积变化率、质心偏移距离、红绿分量比、平均亮度这五个特征量。最后将特征输入到SVM进行二分类,判断是否有火。实验结果表明该算法提高了聚类算法在实际应用中的效率,克服了已有火灾识别算法过分依赖阈值的局限性,适用于室内大空间基于视频监控的火灾探测。

关键词: 火焰识别, 改进层次聚类, 支持向量机, 数据采样

Abstract: In order to improve the fire detection rate based on video monitoring in spacious buildings, a fire detecting algorithm based on improved hierarchical cluster and Support Vector Machines(SVM) is proposed. Firstly suspected targets are detected with pixel motion accumulating method after color detection with a proper color model and the targets number is reduced with an improved hierarchical cluster method. Then the features, inter-frame correlation, area rate, centroid offset, average brightness, proportion of green and red are extracted. Finally the features are entered into the SVM to make a decision. The experimental results show that the cluster efficiency is improved, the limitation of threshold dependence is overcome, and it is suitable for image fire detection in spacious buildings.

Key words: flame detection, improved hierarchical cluster, Support Vector Machines(SVM), data sampling