计算机工程与应用 ›› 2014, Vol. 50 ›› Issue (3): 145-149.

• 图形图像处理 • 上一篇    下一篇

基于DFNN的语义驱动色彩智能设计研究

周  晔,余隋怀,初建杰   

  1. 西北工业大学 现代设计与集成制造技术教育部重点实验室,西安 710072
  • 出版日期:2014-02-01 发布日期:2014-01-26

Research on semantic-driven intelligent color design based on DFNN

ZHOU Ye, YU Suihuai, CHU Jianjie   

  1. The Key Laboratory of Contemporary Design and Integrated Manufacturing Technology, Ministry of Education,Northwestern Polytechnical University, Xi’an 710072, China
  • Online:2014-02-01 Published:2014-01-26

摘要: 色彩是表达设计情感的重要手段,进行了色彩语义的量化处理,通过抽取模糊规则获得主要影响因素,根据色彩方案多维小样本的特点,提出了基于广义径向基函数(RBF)的动态模糊神经网络(DFNN)方法,智能模拟色彩方案的设计、选择过程。根据训练数据开发了色彩智能设计原型系统,结合汽车色彩智能设计进行了可行性验证,能够在较高层次上辅助设计师进行色彩设计。

关键词: 径向基函数, 动态模糊神经网络, 语义, 色彩设计

Abstract: Color design is one of the important means through which the designers express their emotion. This paper quantifies the expressions of color semantics, and obtains the main factors by extracting the fuzzy rules. Considering those scarce multi-dimensional training samples, this paper constructs a Dynamic Fuzzy Neural Network(DFNN) which is based on the generalized Radial Basis Function(RBF) as the neuron activation functions to intelligently simulate the process of designing and choosing a color scheme. After training those data samples, this paper verifies the feasibility of this method by developing an intelligent color design prototype system, which can intelligently assist the designers to design the color of cars with great efficiency at a high-level.

Key words: Radial Basis Function(RBF), Dynamic Fuzzy Neural Network(DFNN), semantics, color design