计算机工程与应用 ›› 2014, Vol. 50 ›› Issue (17): 142-145.

• 数据库、数据挖掘、机器学习 • 上一篇    下一篇

改进的粗糙模糊和模糊粗糙K-均值聚类算法

田大增1,吴  静2   

  1. 1.河北大学 物理科学与技术学院,河北 保定 071002
    2.河北大学 数学与计算机学院,河北 保定 071002
  • 出版日期:2014-09-01 发布日期:2014-09-12

Improvement of rough fuzzy and fuzzy rough clustering algorithm

TIAN Dazeng1, WU Jing2   

  1. 1.Faculty of Physics Science and Technology, Hebei University, Baoding, Hebei 071002, China
    2.Faculty of Mathematics and Computer Science, Hebei University, Baoding, Hebei 071002, China
  • Online:2014-09-01 Published:2014-09-12

摘要: 在分析归纳原有聚类方法不足的基础上,结合粗糙理论和模糊理论,给出了改进的粗糙模糊K-均值聚类算法;设计了新的模糊粗糙K-均值聚类算法,并验证了该聚类算法的有效性;而将这两种聚类算法应用到支持向量机中,对训练样本做预处理,以减少样本数目,提高了其训练速度和分类精度。

关键词: 粗糙模糊K-均值聚类, 糊粗糙K-均值聚类, 支持向量机

Abstract: The shortcomings of the original clustering methods are analyzed. Moreover, the rough theory and fuzzy theory are combined together. The improvement of rough fuzzy K-means clustering algorithm is given. A fuzzy rough K-means clustering algorithm is designed, and the validity of fuzzy rough K-means clustering algorithm is verified. The proposed clustering algorithms are applied to support vector machine. In the above applications, the training samples are pre-processed to reduce the number of samples and improve the training speed and the classification accuracy.

Key words: rough fuzzy K-mean clustering, fuzzy rough K-mean clustering, support vector machine