计算机工程与应用 ›› 2014, Vol. 50 ›› Issue (15): 177-180.
• 信号处理 • 上一篇 下一篇
孙光辉,潘梅森
出版日期:
发布日期:
SUN Guanghui, PAN Meisen
Online:
Published:
摘要: 通过对几种典型聚类算法的分析和比较,提出了一种新的聚类算法,基于扩展约束的半监督谱聚类算法,简称CE-SSC。这种算法扩展了已知约束集,通过密度敏感距离改变样本点的相似关系,结合半监督谱聚类进行聚类。在UCI基准集上的仿真实验结果证明,基于扩展约束的半监督谱聚类算法具有良好的聚类效应。
关键词: 半监督学习, 成对约束, 半监督谱聚类, 距离矩阵
Abstract: Based on several typical clustering algorithm analysis and comparison, this paper proposes a new clustering based on constraint expansion(CESSC). This algorithm expands the known constraints set, changes the similarity relation of the sample points through the density-sensitive path distance, and then combines with semi-supervised spectral clustering to cluster. Experimental results on UCI benchmark data sets prove that CESSC algorithm has good clustering effect.
Key words: semi-supervised learning, pair-wise constraint, semi-supervised spectral clustering, distance matrix
孙光辉,潘梅森. 扩展约束的半监督谱聚类算法研究[J]. 计算机工程与应用, 2014, 50(15): 177-180.
SUN Guanghui, PAN Meisen. Research of constraints-expansion semi-supervised spectral clustering algorithm[J]. Computer Engineering and Applications, 2014, 50(15): 177-180.
0 / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://cea.ceaj.org/CN/
http://cea.ceaj.org/CN/Y2014/V50/I15/177