计算机工程与应用 ›› 2013, Vol. 49 ›› Issue (22): 155-159.

• 图形图像处理 • 上一篇    下一篇

基于双向二维主成分分析的运动目标跟踪

戚培庆,张  超,吕  钊,吴小培   

  1. 安徽大学 计算智能与信号处理教育部重点实验室,合肥 230601
  • 出版日期:2013-11-15 发布日期:2013-11-15

Moving object tracking based on bidirectional two-dimensional principle component analysis

QI Peiqing, ZHANG Chao, LV Zhao, WU Xiaopei   

  1. Key Laboratory of Intelligent Computing & Signal Processing (Ministry of Education), Anhui University, Hefei 230601, China
  • Online:2013-11-15 Published:2013-11-15

摘要: 为克服二维主成分分析(2DPCA)跟踪效率低的缺点,提出一种基于双向二维主成分分析(Bi-2DPCA)的运动目标跟踪算法。采用双向二维主成分分析作为目标表示的方法建立目标图像子空间,同时在图像均值与协方差矩阵的更新中引入基于目标图像匹配程度的自适应增量因子的增量学习的方法进一步提高算法效率。在多个包含动态背景的图像序列上的对比实验结果表明算法能在目标处于部分遮挡的情况下准确跟踪目标,同时算法在效率上高于基于二维主成分分析的目标跟踪算法。

关键词: 二维主成分分析, 双向二维主成分分析, 目标跟踪, 增量学习

Abstract: An object tracking algorithm based on bidirectional two-dimensional principle component analysis(Bi-2DPCA) is proposed. Object representation based on Bi-2DPCA is used to generate the object image subspace. To increase the speed of algorithm, an incremental learning method based on proposed adaptive incremental factor according to the object image match degree is adopted to update the related mean matrix and covariance matrices. The comparative experiments on classical image sequences containing dynamic backgrounds have been carried out, the results show the proposed algorithm is capable of tracking object accurately even in case of partial occlusion, and more efficient than the algorithm based on two-dimensional principle component analysis.

Key words: two-dimensional principle component analysis, bidirectional two-dimensional principle component analysis, object tracking, incremental learning