计算机工程与应用 ›› 2013, Vol. 49 ›› Issue (20): 193-197.
步文斌1,杨 丹2,黄 晟3,葛永新2,张小洪2
BU Wenbin1, YANG Dan2, HUANG Sheng3, GE Yongxin2, ZHANG Xiaohong2
摘要: 传统的基于统计的子空间学习算法如主成分分析,通过学习只能得到一系列特征脸,忽略了人脸识别中重要的局部信息(如眼睛、鼻子)。而利用到类别信息的算法如线性判别分析,也会因为小样本问题而有所影响。为了解决这些问题,结合二维偏最小二乘与非负矩阵分解的非负性思想提出二维非负偏最小二乘(Two-Dimensional Nonnegative Partial Least Squares,2DNPLS)算法。其核心思想是在提取人脸特征时加入了非负性约束,使得2DNPLS不仅拥有偏最小二乘算法加入类别信息带来的分类效果,还保留了图像矩阵的内部结构信息,而且还使得到的基矩阵具有非负的局部的可解释性。在ORL,Yale人脸库中的实验结果表明,该算法从时间上和识别率上均优于人脸识别的主流算法。