摘要: 脉冲耦合神经网络(Pulse Coupled Neural Network)在图像分割中有很大的应用。其在实现过程时,传统的阈值选取是按等间隔下降依次试出来的,未考虑到图像的灰度先验分布,这种方法确定的分割阈值难以保证全局最佳,影响最终的分割效果。鉴于此,提出了将直方图和PCNN结合的算法,解决了全局最佳阈值的选取问题。同时提出了新的边缘乘积互信息准则用于判断图像分割的效果,不但能很好地利用图像目标的边缘信息,还可以大大降低计算量。实验表明,该算法可以在提高分割精度的基础上,显著地减少分割运行时间,提高分割效率。