计算机工程与应用 ›› 2012, Vol. 48 ›› Issue (31): 194-198.

• 图形、图像、模式识别 • 上一篇    下一篇

HMM在手写数字结构信息建模中的应用

李春利,张  磊,惠康华   

  1. 中国民航大学 计算机学院,天津 300300
  • 出版日期:2012-11-01 发布日期:2012-10-30

Application of HMM to modeling structural information of handwritten digits

LI Chunli, ZHANG Lei, HUI Kanghua   

  1. School of Computer Application, Civil Aviation?University of China, Tianjin 300300, China
  • Online:2012-11-01 Published:2012-10-30

摘要: 针对传统隐马尔可夫模型(HMM)在识别对象时没有有效利用所识别对象的结构信息,提出了一种基于原图像分块的HMM。这种模型利用原图像的各个分块作为状态,因此具有相应的拓扑结构,可以为所识别对象的结构信息建模。为了增强模型的描述能力与精确性,采用二阶HMM,引入了终止状态,将其应用在手写数字识别中。考虑到手写数字的结构特点与模型的拓扑结构,提出了一种提取手写数字笔画特征的方法,即根据叉点提取各个笔段的特征向量。对MNIST字库进行测试,平均识别率为95.7%。

关键词: 二阶隐马尔可夫模型, 笔画特征, 聚类, 数字识别

Abstract: An HMM based on blocks of original picture is proposed because of traditional Hidden Markov Model(HMM) being insufficient in modeling the structural information for pattern. This model uses each block of the original picture as the state, so it has a certain topology and can be used in modeling structural information of object. The second-order HMM with final-state is used in order to enhance the ability of description and the accuracy. The model is used in recognition of handwritten digits. Considering the structure of the handwritten digits and the topology of the model, a novel method of extracting the stroke feature is proposed, which extracts each feature vector of strokes with cross point. The recognition rate of 95.7% is obtained from the recognition of MNIST database.

Key words: second-order Hidden Markov Models, stroke feature, cluster, digits recognition